Skip to Content
🚀 Want to help? Get in touch!
ReferenceFormula Derivation

Formula Derivation and Analysis

This page documents how the planetary precession formulas were derived — the physical reasoning, mathematical relationships, and coefficient breakdowns. For the practical “cookbook” formulas, see Formulas. For the model explanation, see Scientific Background.

Purpose of this document: Understanding why the formulas work, not just how to use them. This is valuable for researchers who want to verify, extend, or critique the model.

Quick Reference

TermValueMeaning
Holistic-Year (H)333,888 yearsMaster cycle from which all periods derive via Fibonacci fractions
Anchor Year−301,340 (301,340 BC)Year zero of the current Holistic cycle; formulas use Year + 301340
ERDEarth Rate DeviationDifference between instantaneous and mean Earth perihelion rate (°/year); see Section 14

Formula Types

TypeInput RequirementsBest AccuracyUse Case
ObservedYear + observed angles from CSVR² = 1.0000 for all planetsModel validation, research
PredictiveYear onlyR² > 0.998 for all 7 planetsStandalone predictions

Observed vs Predictive: The “observed” formulas use actual planetary positions from orbital data (the CSV file) as inputs. The “predictive” formulas calculate everything from just the year. Predictive formulas now exist for all 7 planets (Mercury through Neptune) with R² > 0.998. See Formulas: Predictive Formulas for complete details and Python implementation.

Contents

  1. Fibonacci Hierarchy in Orbital Periods
  2. Saturn-Jupiter-Earth Resonance Loop
  3. Mercury Formula: Key Combination Periods
  4. Mercury Formula: Coefficient Breakdown (Predictive)
  5. Venus Formula: Coefficient Breakdown (Observed)
  6. Mars Formula: Coefficient Breakdown
  7. Jupiter Formula: Coefficient Breakdown
  8. Saturn Formula: Coefficient Breakdown
  9. Uranus Formula: Coefficient Breakdown
  10. Neptune Formula: Coefficient Breakdown
  11. Time-Varying Fluctuation
  12. Planetary Physical Comparison
  13. Uncertainties and Limitations
  14. Observed-Angle Formulas (Using Observational Data) — includes ERD definition & formulas

1. Fibonacci Hierarchy in Orbital Periods

A remarkable pattern emerges when dividing the Holistic-Year by Fibonacci numbers. The resulting periods correspond to major planetary cycles:

FibonacciH/FPeriod (years)Astronomical Meaning
3H/3111,296Earth true perihelion precession
5H/566,778Jupiter perihelion precession
8H/841,736Saturn perihelion precession
13H/1325,684Axial precession
21H/2115,899Saturn + Axial beat frequency
34H/349,820Earth + Saturn beat frequency
55H/556,071Higher-order resonance
89H/893,752Higher-order resonance

Beat Frequency Rule: Just as Fibonacci numbers add (F(n) + F(n+1) = F(n+2)), the corresponding beat frequencies follow the same pattern:

1/H(n) + 1/H(n+1) = 1/H(n+2)

For example:

  • 1/H(3) + 1/H(5) = 1/111,296 + 1/66,778 = 1/41,736 = 1/H(8) ✓
  • 1/H(5) + 1/H(8) = 1/66,778 + 1/41,736 = 1/25,684 = 1/H(13) ✓
  • 1/H(8) + 1/H(13) = 1/41,736 + 1/25,684 = 1/15,899 = 1/H(21) ✓

Connection to Golden Ratio: The Fibonacci sequence converges to the golden ratio φ ≈ 1.618. The ratios of consecutive H/F periods approach φ: 111,296/66,778 ≈ 1.667, 66,778/41,736 ≈ 1.600, etc. The solar system’s major cycles appear to be organized around this mathematical constant.


2. Saturn-Jupiter-Earth Resonance Loop

A remarkable discovery emerges when analyzing the planetary precession periods: Saturn’s retrograde precession creates a closed resonance loop with Jupiter and Earth that explains why certain periods appear in the Mercury fluctuation formula.

Saturn’s Unique Motion: Saturn is the only planet whose perihelion precesses retrograde (opposite to orbital motion) with a period of ~41,736 years. All other planets precess prograde. This creates beat frequencies when combined with prograde periods.

The Resonance Loop:

RelationshipCalculationResult
1/Jupiter + 1/Saturn1/66,778 + 1/41,736= 1/25,684 = Axial precession (H/13)
1/Jupiter − 1/Saturn1/66,778 − 1/41,736= 1/111,296 = Earth true perihelion
1/Earth_true − 1/Saturn1/111,296 − 1/41,736= 1/66,778 = Jupiter

This is a closed loop: Starting from any one period, you can derive the others through beat frequency relationships. The three major solar system cycles are mathematically interlinked:

Jupiter (66,778) ←──────────────────────→ Saturn (41,736) ↑ │ │ beat frequencies │ │ ↓ Earth true perihelion (111,296) ←───── Axial precession (25,684)

Physical Interpretation: When Saturn’s retrograde wobble interacts with Jupiter’s prograde wobble:

  • Their sum frequency matches Earth’s axial precession
  • Their difference frequency matches Earth’s true perihelion period
  • This suggests the solar system’s major cycles are coupled through gravitational resonances

3. Mercury Formula: Key Combination Periods

Mercury’s formula is more complex than other planets because three movements interact to create frequency mixing:

  1. Earth’s effective perihelion: 20,868 years (from axial + true perihelion)
  2. Earth’s true perihelion: 111,296 years
  3. Mercury’s perihelion: 242,828 years

When these angular rates combine, they create new “sideband” frequencies through amplitude modulation — similar to how radio signals mix frequencies.

Mixing Frequencies

CombinationPeriod (years)Holistic-Year FractionDerivation
φ_E + φ_M (sum)19,2061/17.4Earth + Mercury mixing
φ_E - φ_M (diff)22,8451/14.6Earth − Mercury mixing
2×(φ_E - φ_M) + (φ_E + φ_M)7,1631/46.6Dominant mixing frequency
2×(φ_E - φ_M) - (φ_E + φ_M)28,1851/11.8Difference mixing frequency
2×φ_M121,414~1/2.75Mercury double-angle
H/5 (Jupiter perihelion)66,7781/5Saturn-Jupiter resonance
Mercury/2211,038~1/30.3Mercury harmonic
Saturn×0.3012,521~1/26.7Saturn fraction
H/34 (Fibonacci)9,8201/34Earth + Saturn beat
Saturn/10 − Mercury beat~4,254~1/78.51/(1/4174 − 1/242828)
Mercury/51~4,761~1/70.1Mercury harmonic

Where:

  • φ_E = effective Earth angle = 360°/20,868 × t
  • φ_M = Mercury angle = 360°/242,828 × t
  • t = YEAR + 301340

Derived Shorter Periods

All periods in the formula have physical derivations:

PeriodValuePhysical DerivationCalculation
11,038Mercury/22Mercury harmonic242,828 ÷ 22 = 11,038
12,521Saturn×0.30Saturn fraction41,736 × 0.30 = 12,521
9,820H/34Fibonacci hierarchy333,888 ÷ 34 = 9,820
4,254Saturn/10 − Mercury beatBeat frequency1/(1/4,174 − 1/242,828) = 4,254
4,761Mercury/51Mercury harmonic242,828 ÷ 51 = 4,761
3,669Mars/21Mars Fibonacci harmonic77,051 ÷ 21 = 3,669

Note: The periods are all physically derived from Mercury, Jupiter, Saturn, or Fibonacci harmonics.

Why this matters: Every period in the Mercury fluctuation formula can now be traced to a physical origin — either a planetary harmonic (Mercury/22, Mercury/51), a Saturn fraction, or a beat frequency between orbital cycles. This transforms the formula from an empirical curve-fit into a physically-grounded model.


4. Mercury Formula: Coefficient Breakdown (Predictive Formula)

Formula Type: This section documents the legacy 106-term predictive formula (year-only input, R² = 0.9986, RMSE = 2.83″/cy). This has been superseded by the unified 273-term system (R² = 0.9990, RMSE = 2.44″/cy) — see Formulas: Predictive Formulas. The coefficient breakdown below remains valid as a reference for the formula’s physical structure. For the observed formula (uses CSV data, 225 terms, R² = 1.0000), see Section 14.

The Mercury predictive fluctuation formula achieves R² = 0.9986 using 106 non-zero coefficients organized into categories:

4.1 Geometric Terms (6 terms)

TermCoefficientSourcePurpose
|sin(δ)|×cos(σ)-27GeometricAmplitude modulation
cos(σ)-7GeometricSum angle
sin(σ)+7GeometricSum angle
cos(2θM)-441ObservedMercury double-angle
sin(2θM)+173ObservedMercury double-angle
cos(2θE)+7ObservedEarth double-angle

Where δ = θ_E - θ_M (relative angle) and σ = θ_E + θ_M (sum angle).

4.2 Phase Terms (26 terms)

TermCoefficientSourcePurpose
sin(t/7163)+16PhaseDominant mixing frequency
cos(t/7163)+4PhaseMixing frequency
sin(t/19206)+18PhaseSum frequency
cos(t/19206)-56PhaseSum frequency
sin(t/121414)+1Phase2×Mercury period
cos(t/121414)+431Phase2×Mercury period
sin(t/28185)+24PhaseDifference frequency
cos(t/28185)+17PhaseDifference frequency
sin(t/111296)-1PhaseEarth true perihelion
cos(t/111296)+4PhaseEarth true perihelion
sin(t/66778)-2PhaseJupiter period
cos(t/66778)+1PhaseJupiter period
sin(t/11038)+3PhaseMercury/22 harmonic
cos(t/11038)+1PhaseMercury/22 harmonic
sin(t/12521)+1PhaseSaturn×0.30 fraction
cos(t/12521)-8PhaseSaturn×0.30 fraction
sin(t/9820)-1PhaseH/34 Fibonacci period
cos(t/9820)+3PhaseH/34 Fibonacci period
sin(t/20868)-3PhaseEarth effective perihelion
cos(t/20868)+650PhaseEarth effective perihelion
sin(t/242828)-15PhaseMercury perihelion
cos(t/242828)-135PhaseMercury perihelion

4.3 Auxiliary Terms (2 terms)

TermCoefficientSourcePurpose
(Obliquity-23.414)+12ObservedObliquity effect
(Eccentricity-0.015387)+478,089ObservedEccentricity effect (see note)

Note: The eccentricity mean has been updated to e0=0.0153212+0.00142262=0.015387e_0 = \sqrt{0.015321^2 + 0.0014226^2} = 0.015387. The Python observed formula coefficients have been retrained against this value. The coefficient +478,089 shown here is from the legacy Excel approximation.

4.4 ERD Basic Terms (7 terms)

TermCoefficientSourcePurpose
ERD+21,322RateEarth Rate Deviation (linear)
ERD×cos(δ)+81,832RateERD angle interaction
ERD×sin(δ)+2,702RateERD angle interaction
ERD×cos(2δ)-620RateERD double-angle interaction
ERD×sin(2δ)+786RateERD double-angle interaction
ERD²+853,292RateERD quadratic term
Obliq×ERD-403RateObliquity-ERD interaction

4.5 Higher Harmonics (7 terms)

TermCoefficientSourcePurpose
cos(3θM)+4HarmonicMercury 3rd harmonic
cos(4θM)-15HarmonicMercury 4th harmonic
sin(4θM)+9HarmonicMercury 4th harmonic
cos(3δ)+3HarmonicRelative angle 3rd harmonic
sin(3δ)+2HarmonicRelative angle 3rd harmonic
ERD×cos(3δ)+895HarmonicERD × 3rd harmonic
ERD×sin(3δ)+232HarmonicERD × 3rd harmonic

4.6 ERD × Periodic Terms (12 terms)

TermCoefficientSourcePurpose
ERD×sin(t/7163)+603HarmonicERD × mixing frequency
ERD×cos(t/7163)-176HarmonicERD × mixing frequency
ERD×sin(t/20868)-1,677HarmonicERD × Earth effective
ERD×cos(t/20868)-10,336HarmonicERD × Earth effective
ERD×sin(t/121414)-7,327HarmonicERD × 2×Mercury
ERD×cos(t/121414)+395HarmonicERD × 2×Mercury
ERD×sin(t/19206)+20,103HarmonicERD × sum frequency
ERD×cos(t/19206)+62,079HarmonicERD × sum frequency
ERD×sin(t/28185)-4,451HarmonicERD × difference frequency
ERD×cos(t/28185)+3,083HarmonicERD × difference frequency
ERD×sin(t/111296)+3,607HarmonicERD × Earth true
ERD×cos(t/111296)-5,291HarmonicERD × Earth true

4.7 ERD² × Periodic Terms (10 terms)

These quadratic rate terms were the key breakthrough for reaching 99.8% accuracy:

TermCoefficientSourcePurpose
ERD²×sin(t/7163)-132,402HarmonicQuadratic rate × mixing
ERD²×cos(t/7163)+36,800HarmonicQuadratic rate × mixing
ERD²×sin(t/20868)-1,134,935HarmonicQuadratic rate × Earth effective
ERD²×cos(t/20868)+1,784,775HarmonicQuadratic rate × Earth effective
ERD²×sin(t/121414)+1,123,268HarmonicQuadratic rate × 2×Mercury
ERD²×cos(t/121414)+416,835HarmonicQuadratic rate × 2×Mercury
ERD²×sin(t/111296)-623,746HarmonicQuadratic rate × Earth true
ERD²×cos(t/111296)+823,617HarmonicQuadratic rate × Earth true
ERD²×sin(t/19206)+197,457HarmonicQuadratic rate × sum
ERD²×cos(t/19206)+152,907HarmonicQuadratic rate × sum

4.8 Triple Interactions (ERD × Periodic × Angle, 24 terms)

TermCoefficientPurpose
ERD×sin(t/7163)×cos(δ)+7,828Triple: rate × 7163 × δ
ERD×sin(t/7163)×sin(δ)+4,336Triple: rate × 7163 × δ
ERD×cos(t/7163)×cos(δ)+5,325Triple: rate × 7163 × δ
ERD×cos(t/7163)×sin(δ)-7,226Triple: rate × 7163 × δ
ERD×sin(t/7163)×cos(2δ)-6,657Triple: rate × 7163 × 2δ
ERD×sin(t/7163)×sin(2δ)+22,805Triple: rate × 7163 × 2δ
ERD×cos(t/7163)×cos(2δ)+22,722Triple: rate × 7163 × 2δ
ERD×cos(t/7163)×sin(2δ)+6,210Triple: rate × 7163 × 2δ
ERD×sin(t/20868)×cos(δ)+40,984Triple: rate × 20868 × δ
ERD×sin(t/20868)×sin(δ)-7,570Triple: rate × 20868 × δ
ERD×cos(t/20868)×cos(δ)-12,433Triple: rate × 20868 × δ
ERD×cos(t/20868)×sin(δ)-38,981Triple: rate × 20868 × δ
ERD×sin(t/121414)×cos(δ)+31,407Triple: rate × 121414 × δ
ERD×sin(t/121414)×sin(δ)+25,110Triple: rate × 121414 × δ
ERD×cos(t/121414)×cos(δ)-16,012Triple: rate × 121414 × δ
ERD×cos(t/121414)×sin(δ)+40,263Triple: rate × 121414 × δ
(plus 8 more 2δ terms)

4.9 Mercury Period Terms (2 terms)

TermCoefficientPurpose
ERD×sin(t/242828)-14,713ERD × Mercury perihelion
ERD×cos(t/242828)-35,146ERD × Mercury perihelion

4.10 Periodic × Angle (no ERD, 11 terms)

TermCoefficientPurpose
sin(t/20868)×cos(δ)+137Period × angle
cos(t/20868)×cos(δ)-122Period × angle
cos(t/20868)×sin(δ)-134Period × angle
sin(t/121414)×sin(δ)-148Period × angle
cos(t/121414)×cos(δ)+114Period × angle
(plus 6 more)

Summary (Predictive Formula)

Constant: +22

Total: 106 non-zero coefficients (predictive formula, year-only input)

Accuracy: R² = 0.9986 (explains 99.86% of variance across full 333,888-year cycle) RMSE: 2.83 arcsec/century

Note: The observed formula (Section 14) achieves R² = 1.0000 with 225 terms by using actual perihelion data from CSV.

Note on ERD Terms: The formula dramatically expands the ERD treatment with ERD × Periodic terms (12 terms), ERD² × Periodic terms (10 terms capturing quadratic rate modulation), and triple interactions (ERD × periodic × angle, 24 terms). The ERD² × Periodic terms proved to be the key to reaching 99.8% accuracy. The largest coefficients (±1.8 million for ERD²×cos(t/20868)) indicate that the squared rate deviation interacting with Earth’s effective perihelion cycle is a dominant correction term. The eccentricity coefficient (+478,089) reflects the strong coupling between Mercury’s eccentric orbit and ERD variations.


5. Venus Formula: Coefficient Breakdown (Observed Formula)

Formula Type: This section documents the observed formula (uses CSV data, 328 terms, R² = 1.0000, RMSE = 0.27″/cy). Venus also has a predictive formula (unified 273-term system, year-only input, R² = 0.9983, RMSE = 21.64″/cy) — see Formulas: Predictive Formulas.

Venus presents a fundamentally different challenge than Mercury. With an eccentricity of only 0.00678 (compared to Mercury’s 0.20564), Venus has a nearly circular orbit where geometric modulation effects are minimal. Instead, Venus’s fluctuation is dominated by variations in Earth’s axial precession rate.

5.1 The Earth Rate Deviation Model

The Venus formula is based on the physical principle that:

  1. Perihelion points move at eccentricity distance from orbit center

    • Venus: e = 0.00678, so perihelion is only 0.0049 AU from center (poorly defined)
    • Earth: e = 0.01671, so perihelion is 0.0167 AU from center
  2. Earth’s reference frame rotates due to axial precession

    • Mean period: 25,684 years
    • Current period: ~25,772 years (varying with obliquity)
  3. Earth Rate Deviation (ERD) captures this variation:

    ERD = (Earth perihelion rate) - (expected rate) = (Earth perihelion rate) - (360° / 20,868 years)
  4. The observed fluctuation depends on:

    • The relative angle between Venus perihelion and Earth’s reference (θE - θV)
    • Earth’s instantaneous axial precession rate variation (ERD)
    • Interactions between these two factors

5.2 Relative Angle Terms (δ = θE - θV)

TermCoefficient
cos(δ)+1,037
sin(δ)-1,312
cos(2δ)+80
sin(2δ)+860
cos(3δ)+33
sin(3δ)-44
cos(4δ)-14
sin(4δ)+10

5.3 Earth Rate Deviation Terms

TermCoefficient
ERD-358,356
ERD × cos(δ)-234,829
ERD × sin(δ)-11,488
ERD × cos(2δ)-1,038,655
ERD × sin(2δ)+570,929
ERD²-112,855,487

5.4 Individual Angle Terms

TermCoefficient
cos(θE)-2,884
sin(θE)+1,205
cos(2θE)-284
sin(2θE)+26
cos(θV)+4,084
sin(θV)-7,418
cos(2θV)-1,670
sin(2θV)+931

5.5 Periodic Terms

Periodsincos
667,776 (Venus)+5,859+8,260
333,888 (H)+395+746
111,296 (H/3)-22-24
41,736 (H/8)+39+2
20,868 (Earth eff.)-7,833-2,925
6,956 (H/48)-135+229

5.6 ERD × Periodic Terms

TermCoefficientPhysical Meaning
ERD × sin(t/20868)+3,346,580ERD modulated by perihelion precession
ERD × cos(t/20868)+1,163,334ERD modulated by perihelion precession
ERD × sin(t/667776)-4,863,030ERD modulated by Venus perihelion
ERD × cos(t/667776)+4,374,726ERD modulated by Venus perihelion
ERD × sin(t/333888)+322,475ERD modulated by Holistic-Year
ERD × cos(t/333888)-172,362ERD modulated by Holistic-Year
ERD × sin(t/111296)+1,054ERD modulated by inclination
ERD × cos(t/111296)-5,235ERD modulated by inclination
ERD × sin(t/41736)+8,125ERD modulated by obliquity
ERD × cos(t/41736)+17,121ERD modulated by obliquity
ERD × sin(t/6956)-46,310ERD modulated by H/48
ERD × cos(t/6956)-61,608ERD modulated by H/48

5.7 Periodic × Angle Terms (amplitude modulation)

TermCoefficientPhysical Meaning
sin(t/20868) × cos(δ)-5,921Perihelion × geometry
sin(t/20868) × sin(δ)+7,926Perihelion × geometry
cos(t/20868) × cos(δ)-19,742Perihelion × geometry
cos(t/20868) × sin(δ)+22,347Perihelion × geometry
sin(t/20868) × cos(2δ)-2,837Perihelion × 2× geometry
sin(t/20868) × sin(2δ)+4,176Perihelion × 2× geometry
cos(t/20868) × cos(2δ)+5,363Perihelion × 2× geometry
cos(t/20868) × sin(2δ)+2,331Perihelion × 2× geometry
sin(t/667776) × cos(δ)+7,621Venus period × geometry
sin(t/667776) × sin(δ)-12,107Venus period × geometry
cos(t/667776) × cos(δ)+12,298Venus period × geometry
cos(t/667776) × sin(δ)-2,692Venus period × geometry
sin(t/667776) × cos(2δ)-17,370Venus × 2× geometry
sin(t/667776) × sin(2δ)-3,035Venus × 2× geometry
cos(t/667776) × cos(2δ)+2,123Venus × 2× geometry
cos(t/667776) × sin(2δ)-17,304Venus × 2× geometry
sin(t/333888) × cos(δ)-707H × geometry
sin(t/333888) × sin(δ)+665H × geometry
cos(t/333888) × cos(δ)-833H × geometry
cos(t/333888) × sin(δ)-414H × geometry

5.8 ERD × Periodic × Angle Terms (triple interaction, KEY terms)

TermCoefficientPhysical Meaning
ERD × sin(t/20868) × sin(δ)-5,657,660Rate × phase × geometry
ERD × cos(t/20868) × cos(δ)-8,035,742Rate × phase × geometry
ERD × sin(t/20868) × cos(δ)+125,840Rate × phase × geometry
ERD × cos(t/20868) × sin(δ)+1,630,420Rate × phase × geometry
ERD × sin(t/20868) × cos(2δ)-1,775,121Rate × phase × 2× geometry
ERD × sin(t/20868) × sin(2δ)-3,139,592Rate × phase × 2× geometry
ERD × cos(t/20868) × cos(2δ)-2,702,485Rate × phase × 2× geometry
ERD × cos(t/20868) × sin(2δ)+986,428Rate × phase × 2× geometry
ERD × sin(t/667776) × sin(δ)+6,117,614Rate × Venus × geometry
ERD × sin(t/667776) × cos(δ)-2,166,058Rate × Venus × geometry
ERD × cos(t/667776) × cos(δ)-171,831Rate × Venus × geometry
ERD × cos(t/667776) × sin(δ)+1,334,347Rate × Venus × geometry
ERD × sin(t/333888) × sin(δ)-86,179Rate × H × geometry
ERD × sin(t/333888) × cos(δ)+306,909Rate × H × geometry
ERD × cos(t/333888) × cos(δ)-427,267Rate × H × geometry
ERD × cos(t/333888) × sin(δ)+507,766Rate × H × geometry
ERD × sin(t/111296) × cos(δ)-1,401Rate × incl × geometry
ERD × sin(t/111296) × sin(δ)-11,582Rate × incl × geometry
ERD × cos(t/111296) × cos(δ)-15,229Rate × incl × geometry
ERD × cos(t/111296) × sin(δ)-10,878Rate × incl × geometry
ERD × sin(t/41736) × cos(δ)-37,979Rate × obliq × geometry
ERD × sin(t/41736) × sin(δ)-5,593Rate × obliq × geometry
ERD × cos(t/41736) × cos(δ)+9,982Rate × obliq × geometry
ERD × cos(t/41736) × sin(δ)+6,997Rate × obliq × geometry
ERD × sin(t/6956) × cos(δ)-128,955Rate × H/48 × geometry
ERD × sin(t/6956) × sin(δ)+77,955Rate × H/48 × geometry
ERD × cos(t/6956) × cos(δ)-47,034Rate × H/48 × geometry
ERD × cos(t/6956) × sin(δ)+36,966Rate × H/48 × geometry

5.9 ERD² × Periodic Terms (quadratic rate modulation)

TermCoefficientPhysical Meaning
ERD² × sin(t/20868)+99,207,877Rate² × perihelion phase
ERD² × cos(t/20868)+111,052,242Rate² × perihelion phase
ERD² × sin(t/667776)+50,061,905Rate² × Venus phase
ERD² × cos(t/667776)+286,162,990Rate² × Venus phase
ERD² × sin(t/333888)-52,734,896Rate² × H phase
ERD² × cos(t/333888)+11,348,620Rate² × H phase
ERD² × sin(t/111296)-1,365,227Rate² × inclination phase
ERD² × cos(t/111296)-1,497,701Rate² × inclination phase

5.10 Higher Harmonic Terms

TermCoefficientPhysical Meaning
ERD × sin(t/20868) × cos(3δ)-426,328Rate × phase × 3× geometry
ERD × sin(t/20868) × sin(3δ)-246,344Rate × phase × 3× geometry
ERD × cos(t/20868) × cos(3δ)-490,205Rate × phase × 3× geometry
ERD × cos(t/20868) × sin(3δ)+493,871Rate × phase × 3× geometry
ERD × sin(t/667776) × cos(3δ)+141,083Rate × Venus × 3× geometry
ERD × sin(t/667776) × sin(3δ)-80,015Rate × Venus × 3× geometry
ERD × cos(t/667776) × cos(3δ)+69,508Rate × Venus × 3× geometry
ERD × cos(t/667776) × sin(3δ)+25,816Rate × Venus × 3× geometry
ERD × sin(t/6956) × cos(2δ)-39,764Rate × H/48 × 2× geometry
ERD × sin(t/6956) × sin(2δ)-45,035Rate × H/48 × 2× geometry
ERD × cos(t/6956) × cos(2δ)-32,422Rate × H/48 × 2× geometry
ERD × cos(t/6956) × sin(2δ)+72,034Rate × H/48 × 2× geometry

Summary

Constant: +984

Total: 328 non-zero coefficients (organized into relative angle, ERD, individual angle, periodic, triple interaction, ERD³, and 4δ harmonic terms)

Accuracy: R² = 1.0000 (explains 100% of variance) RMSE: 0.27 arcsec/century (using observed perihelion from CSV)

Key Terms: The formula achieves near-perfect accuracy (R² = 1.0000, RMSE = 0.27) through:

  1. ERD² × Periodic terms — Quadratic rate modulation that captures non-linear behavior at cycle boundaries
  2. ERD² × Angle terms — Additional ERD² × cos/sin(δ), cos/sin(2δ), cos/sin(3δ) interactions
  3. Higher harmonic terms (3δ, 4δ) — Triple and quadruple relative angle terms that capture peak variations
  4. 6956 × 2δ interactions — Additional amplitude modulation from the H/48 cycle
  5. ERD × obliquity/eccentricity coupling — Cross-terms with Earth’s orbital parameters

The critical terms are ERD²×cos(667776) = +286,162,990 and ERD²×cos(20868) = +111,052,242, which capture the quadratic relationship between Earth’s precession rate variation and the Venus fluctuation amplitude.


6. Mars Formula: Coefficient Breakdown

Mars presents a unique challenge among the terrestrial planets. With an eccentricity of 0.09339 (between Venus’s near-circular orbit and Mercury’s highly elliptical one), Mars shows moderate geometric modulation effects combined with strong coupling to Earth’s orbital dynamics.

6.1 Physical Driver

Mars’s precession fluctuation is driven by:

  1. Relative geometry: The angle between Mars’s perihelion and Earth’s perihelion (δ = θE - θMars)
  2. Earth Rate Deviation (ERD): Variations in Earth’s axial precession rate
  3. Mars’s own perihelion precession: Period of ~77,051 years (H×3/13)
  4. Jupiter-Mars resonance: Mars is strongly influenced by Jupiter’s gravitational perturbations

6.2 Formula Summary

PropertyValue
Perihelion period77,051 years (H×3/13)
Eccentricity0.09339
Formula R²1.0000
RMSE0.02 arcsec/century
Features225 terms

Why Mars achieves perfect fit: Using the actual observed perihelion from orbital data (rather than calculating from assumed periods) allows the formula to capture Mars’s complex precession pattern with near-perfect accuracy. Mars’s intermediate eccentricity means both geometric and ERD effects are significant.

6.3 Key Term Categories

The 225 terms include:

  • Angle terms (δ harmonics through 4δ)
  • Obliquity & eccentricity coupling terms
  • ERD terms (linear, quadratic, cubic)
  • Periodic terms from H, H/3, H/5, H/8, H/13, H/16, and Mars period
  • Cross-products: ERD × periodic, periodic × angle, ERD × periodic × angle
  • Beat frequency terms between Mars and Earth periods

For full implementation details, see the Python reference in /docs/mars_coeffs.py.


7. Jupiter Formula: Coefficient Breakdown

Jupiter, as the largest planet, dominates the outer solar system’s gravitational dynamics. Its precession fluctuation shows strong coupling with Saturn through the Saturn-Jupiter-Earth resonance loop described in Section 2.

7.1 Physical Driver

Jupiter’s precession fluctuation is driven by:

  1. Saturn resonance: Jupiter and Saturn are locked in gravitational resonance
  2. Earth’s reference frame motion: ERD effects still contribute
  3. Fibonacci hierarchy: Jupiter’s period (H/5 = 66,778 years) is a key Fibonacci division
  4. Long-term stability: Jupiter’s massive orbit shows slow, predictable precession

7.2 Formula Summary

PropertyValue
Perihelion period66,778 years (H/5)
Eccentricity0.04839
Formula R²1.0000
RMSE0.03 arcsec/century
Features225 terms

Jupiter’s Fibonacci connection: Jupiter’s period H/5 = 66,778 years is a fundamental Fibonacci division. This explains why Jupiter appears in the beat frequency calculations for Mercury, Venus, and all other planets. Jupiter acts as a gravitational anchor for the outer solar system.

7.3 Key Periods in Jupiter Formula

PeriodH FractionPhysical Meaning
66,778H/5Jupiter’s own precession
41,736H/8Saturn precession (resonance partner)
25,684H/13Axial precession (Jupiter+Saturn sum)
111,296H/3Inclination cycle
20,868H/16Earth effective perihelion

For full implementation details, see the Python reference in /docs/jupiter_coeffs.py.


8. Saturn Formula: Coefficient Breakdown

Saturn is unique in the solar system: it is the only planet with retrograde perihelion precession. While all other planets precess prograde (in the direction of orbital motion), Saturn’s perihelion precesses opposite to its orbital motion with a period of ~41,736 years.

8.1 Physical Driver

Saturn’s precession fluctuation is driven by:

  1. Retrograde precession: Creates beat frequencies when combined with prograde periods
  2. Jupiter resonance: Saturn and Jupiter form a closed resonance loop
  3. Obliquity coupling: Saturn’s period (H/8) matches Earth’s obliquity cycle
  4. Ring dynamics: Saturn’s rings influence its precession behavior

8.2 Formula Summary

PropertyValue
Perihelion period41,736 years (H/8) — RETROGRADE
Eccentricity0.05386
Formula R²1.0000
RMSE0.03 arcsec/century
Features225 terms

Retrograde precession: Saturn’s perihelion precesses opposite to its orbital direction. This unique behavior creates the resonance loop with Jupiter and Earth that appears throughout the Holistic model. When calculating beat frequencies, Saturn’s rate must be treated as negative.

8.3 The Saturn-Jupiter-Earth Loop

Saturn’s role in the resonance loop (from Section 2):

1/Jupiter + 1/Saturn = 1/66,778 + 1/41,736 = 1/25,684 ≈ Axial precession 1/Jupiter − 1/Saturn = 1/66,778 − 1/41,736 = 1/111,296 = Earth true perihelion

This closed loop means Saturn’s coefficients include strong coupling to Jupiter and Earth periods.

8.4 Predictive Formula Enhancement

The predictive formula for Saturn uses the unified 273-term matrix enhanced with time-varying obliquity and eccentricity (GROUP 15 terms):

εSaturn(t)=23.414°+1.2°cos(2πt41736)\varepsilon_{\text{Saturn}}(t) = 23.414° + 1.2° \cdot \cos\left(\frac{2\pi t}{41736}\right) eSaturn(t)=0.015387+0.019cos(2πt41736)e_{\text{Saturn}}(t) = 0.015387 + 0.019 \cdot \cos\left(\frac{2\pi t}{41736}\right)

This accounts for the resonance between Saturn’s perihelion period (41,736 years) and Earth’s obliquity cycle. The predictive formula achieves R² = 1.0000, RMSE = 0.29″/century.

For implementation details, see docs/predictive_formula.py (GROUP 15 terms in build_features).

Critical Finding: Saturn is Unique

Of all seven planets modeled, Saturn is the only one that requires time-varying obliquity and eccentricity to achieve accurate predictive results:

PlanetObliq/Ecc TreatmentR² Achieved (unified 273-term)
MercuryConstant (standard formulas)0.9990
VenusNot used0.9983
MarsZeros (not needed)0.9999
JupiterZeros (not needed)0.9999
SaturnTime-varying (GROUP 15 terms)1.0000
UranusZeros (not needed)0.9999
NeptuneNot used0.9999

This mathematical requirement provides strong evidence that Saturn drives Earth’s obliquity cycle. The period synchronization (both = 41,736 years = H/8) and the necessity of explicit coupling for accurate modeling suggest a causal relationship: Saturn’s gravitational influence modulates Earth’s axial tilt oscillation.

This challenges the standard Milankovitch interpretation, which attributes obliquity variations to general gravitational torque without identifying a specific planetary driver.


9. Uranus Formula: Coefficient Breakdown

Uranus’s perihelion precession period (H/3 = 111,296 years) matches Earth’s inclination precession cycle. This places Uranus in a key resonance position within the Fibonacci hierarchy, sharing a period with one of Earth’s fundamental orbital oscillations.

9.1 Physical Driver

Uranus’s precession fluctuation is driven by:

  1. Inclination cycle resonance: Uranus’s period matches H/3 (Earth’s inclination precession)
  2. Extreme axial tilt: Uranus’s 98° tilt may influence its precession dynamics
  3. Outer planet coupling: Interactions with Neptune, Saturn, and Jupiter
  4. Ice giant dynamics: Different internal structure than gas giants

9.2 Formula Summary

PropertyValue
Perihelion period111,296 years (H/3)
Eccentricity0.04726
Formula R²1.0000
RMSE0.01 arcsec/century
Features225 terms

Near-perfect fit: Uranus achieves the best fit among all planets (RMSE = 0.01 arcsec/century). This remarkable precision suggests that Uranus’s precession is particularly well-described by the Fibonacci hierarchy. The match with Earth’s inclination cycle (H/3) indicates a deep resonance in the solar system’s structure.

9.3 Uranus-Earth Resonance

Uranus’s period (111,296 years) exactly matches Earth’s inclination precession cycle (H/3). This creates:

  • Direct coupling between Uranus’s perihelion and Earth’s orbital plane oscillation
  • Strong resonance terms in the formula
  • Excellent predictability over historical timescales

For full implementation details, see the Python reference in /docs/uranus_coeffs.py.


10. Neptune Formula: Coefficient Breakdown

Neptune, the outermost major planet, has the longest precession period in the Fibonacci hierarchy: H×2 = 667,776 years. This ultra-slow precession, combined with Neptune’s nearly circular orbit, makes it the most challenging planet to model precisely.

10.1 Physical Driver

Neptune’s precession fluctuation is driven by:

  1. Outer solar system dynamics: Dominated by interactions with Uranus
  2. Venus period resonance: Period (H×2 = 667,776 years) matches Venus’s precession period
  3. Long orbital period: 164.8 years means slow accumulation of precession
  4. Kuiper Belt interactions: Possible perturbations from trans-Neptunian objects

10.2 Formula Summary

PropertyValue
Perihelion period667,776 years (H×2)
Eccentricity0.00859 (nearly circular)
Formula R²1.0000
RMSE0.01 arcsec/century
Features225 terms

Neptune-Venus connection: Neptune shares its perihelion precession period (H×2 = 667,776 years) with Venus. Despite being at opposite ends of the solar system, these two nearly-circular planets (e = 0.00859 and 0.00678 respectively) share this ultra-long timescale. This may reflect a deep structural property of the solar system’s organization around the Fibonacci hierarchy.

10.3 Neptune-Venus Period Match

Neptune’s precession period (H×2 = 667,776 years) exactly matches Venus’s precession period. Both planets have nearly circular orbits, which may explain why they share this ultra-long timescale in the Fibonacci hierarchy.

For full implementation details, see the Python reference in /docs/neptune_coeffs.py.

10.4 Predictive Formula Enhancement

Neptune now uses the unified 273-term predictive matrix, the same system used by all other planets. Despite Neptune and Venus sharing the same precession period (H×2 = 667,776 years), the unified matrix handles this through its ridge regression regularization (α=0.01), which prevents term interference between the two planets.

PropertyObserved FormulaPredictive Formula
1.00000.9999
RMSE0.01 arcsec/century0.20 arcsec/century
Features225 terms273 terms (unified)

Venus period match: Both Neptune and Venus have precession period H×2 = 667,776 years. The ridge regression regularization in the unified predictive system handles this shared period without requiring a custom reduced feature set.


11. Time-Varying Fluctuation

The Mercury fluctuation is not constant — it varies over Mercury’s 242,828-year perihelion cycle. The formula’s many terms (geometric, periodic, ERD) combine to produce a time-dependent value.

At year 2000, these terms combine to give approximately +38.8 arcsec/century. The historical “43 arcsec anomaly” corresponds to Einstein’s era (~1900, when the model gives ~42.9″). The value is decreasing as Earth’s precession cycles progress.

The model predicts this value will DECREASE over time. By year 2689, it drops to 4 arcsec/century; by year 3244, it becomes negative (-26 arcsec/century).

YearFluctuation
1912~43″/century
2023~38″/century
2689~4″/century
3244~-26″/century

Base Amplitude

The geometric coefficients scale with Mercury’s orbital properties:

A = Baseline × e_Mercury = 533.7 × 0.20564 ≈ 110 arcsec/century

Where:

  • Baseline = 533.7 arcsec/century (Mercury’s Newtonian precession rate = 1,296,000″ ÷ 242,828 × 100)
  • e_Mercury = 0.20564 (Mercury’s orbital eccentricity)

The actual coefficients in the formula are optimized jointly with ERD terms, resulting in values that differ from simple geometric predictions. The dominant cos(2θM) term (-441) and the large eccentricity coefficient (+478,089) reflect the complex interplay between geometric effects and Earth Rate Deviation.


12. Planetary Physical Comparison

The table below shows two sets of formula accuracy values:

  • Observed: Uses actual perihelion positions from observational data (CSV)
  • Predictive: Calculates all values from year only (standalone formulas)
PropertyMercuryVenusMarsJupiterSaturnUranusNeptune
Eccentricity0.205640.006780.093390.048390.053860.047260.00859
Period (years)242,828667,77677,05166,77841,736111,296667,776
H FractionH×8/11H×2H×3/13H/5H/8H/3H×2

Observed Formula Accuracy (using CSV data)

PlanetRMSE (″/cy)Features
Mercury1.00000.08225
Venus1.00000.27328
Mars1.00000.02225
Jupiter1.00000.03225
Saturn1.00000.03225
Uranus1.00000.01225
Neptune1.00000.01225

Predictive Formula Accuracy (year-only input, unified 273-term system)

PlanetRMSE (″/cy)Features
Mercury0.99902.44273
Venus0.998321.64273
Mars0.99990.75273
Jupiter0.99990.52273
Saturn1.00000.29273
Uranus0.99990.28273
Neptune0.99990.20273

Why the difference? Observed formulas use actual planetary positions from the CSV data, while predictive formulas must calculate everything from just the year. Venus’s near-circular orbit (e = 0.007) makes its perihelion position poorly defined, so the observed formula achieves much better accuracy (0.27 vs 21.64 arcsec).

Key Observations

Inner Planets (Mercury, Venus):

  • Mercury’s high eccentricity (0.21) creates strong, predictable geometric modulation
  • Venus’s near-circular orbit (e = 0.007) means precession fluctuation is dominated by ERD² effects
  • Venus requires 328 features (including ERD³, 4δ harmonics, and obliquity/eccentricity coupling) to achieve 0.27 arcsec accuracy

Mars (Transition):

  • Intermediate eccentricity (0.09) shows both geometric and ERD effects
  • Achieves perfect fit (R² = 1.0000) when using observed perihelion data
  • Acts as a bridge between inner planet and outer planet dynamics

Outer Planets (Jupiter, Saturn, Uranus, Neptune):

  • All achieve perfect fits (R² = 1.0000) with 225 features
  • Uranus and Neptune achieve the best fits (RMSE = 0.01 arcsec/century)
  • Saturn is unique with retrograde precession, creating the resonance loop
  • Neptune and Venus share the same period (H×2 = 667,776 years) despite being at opposite ends of the solar system

Physical Interpretation: The Fibonacci hierarchy organizes the entire solar system’s precession dynamics. Planetary periods correspond to simple fractions of H = 333,888 years: Jupiter (H/5), Saturn (H/8), Mars (H×3/13), Uranus (H/3), and both Venus and Neptune share H×2. The near-perfect fits achieved across all planets suggest the solar system is deeply organized around this mathematical structure.


13. Uncertainties and Limitations

The formula is a provisional approximation — a best-fit model with physically-motivated terms. The predictive Mercury RMSE of ~2.83 arcsec/century (106-term legacy formula) arises from several sources of uncertainty:

13.1 Base Period Parameters

The fundamental periods are model parameters, not independently derived values:

ParameterCurrent ValueH FractionImpact
Holistic-Year (H)333,888 yearsAll derived periods scale with H
Earth precession cycles
Axial precession25,684 yearsH/13All formulas using longitude of perihelion
Inclination precession111,296 yearsH/3Obliquity, inclination formulas
Effective perihelion20,868 yearsH/16Earth term in all planetary fluctuations
Obliquity cycle41,736 yearsH/8Obliquity formula
Planetary perihelion periods
Mercury242,828 yearsH×8/11Mercury fluctuation formula
Venus667,776 yearsH×2Venus fluctuation formula
Mars77,051 yearsH×3/13Mars fluctuation formula
Jupiter66,778 yearsH/5Jupiter fluctuation, beat frequencies
Saturn41,736 years (retrograde)H/8Saturn fluctuation, resonance loop
Uranus111,296 yearsH/3Uranus fluctuation formula
Neptune667,776 yearsH×2Neptune fluctuation formula

Note: Saturn is the only planet with retrograde perihelion precession (opposite to orbital motion). Venus and Neptune share the same period (H×2). Uranus shares its period with Earth’s inclination precession (H/3).

If future research refines H (e.g., to 333,900 or 333,850), all beat frequencies and coefficients would need recalculation.

13.2 Beat Frequency Sensitivity

The periodic terms depend on precise period ratios. Small changes propagate:

  • If Mercury = 242,828 ± 100 years → the 7,163-year term shifts by ~3 years
  • If H = 333,888 ± 50 years → the 111,296-year term (H/3) shifts by ~17 years

Over 300,000+ years, even small period errors accumulate into phase drift.

13.3 Simplified Geometry

The formula assumes:

  • Idealized two-body interactions (Earth-Mercury)
  • Constant orbital eccentricities (in reality, they vary slightly)
  • No higher-order gravitational perturbations

13.4 Coefficient Rounding

All coefficients are rounded to integers for simplicity. The optimal least-squares values are non-integer (e.g., 42.8 → 43, -89.6 → -90), introducing small systematic errors.

Status: This formula should be considered provisional until the base periods (H, Mercury, Mars) are independently verified or derived from first principles. The legacy 106-term predictive formula explains 99.86% of variance with RMSE = 2.83 arcsec/century. The unified 273-term predictive system achieves R² = 0.9990 (RMSE = 2.44) for Mercury. The remaining residual represents the combined effect of these uncertainties.


14. Observed-Angle Formulas (Using Observational Data)

The formulas in this section require observed orbital parameters as inputs — Earth perihelion position, planetary perihelion position, obliquity, eccentricity, and Earth Rate Deviation (ERD). These formulas were used during model development to fit against ice-core chronological data. For predictive formulas (year-only input), see Formulas.

Relationship to Earlier Sections:

  • Section 4 documents Mercury’s predictive formula (106 terms, year-only input)
  • Section 5 documents Venus’s observed formula coefficient breakdown (328 terms)
  • Sections 6-10 summarize outer planet formulas

This section provides implementation details: Excel formulas, column references, and Python script locations.

Legacy Excel Formulas: The Excel formulas for Mercury and Venus below are simplified approximations retained for spreadsheet users. They were manually constructed with rounded coefficients and do not match the current Python implementations exactly. For accurate calculations, use the Python scripts in /docs/. Excel formulas are provided only for Mercury and Venus — outer planets should use Python exclusively.

Earth Rate Deviation (ERD) — Shared Helper

Both Mercury and Venus formulas use Earth Rate Deviation (ERD) to account for variations in Earth’s axial precession rate.

Scientific Notation:

ERD=dθEdtω0\text{ERD} = \frac{d\theta_E}{dt} - \omega_0

Where:

  • dθEdt\frac{d\theta_E}{dt} = Instantaneous Earth perihelion rate (°/year)
  • ω0=360°20,868=0.01725°\omega_0 = \frac{360°}{20,868} = 0.01725°/year — Expected (mean) rate

The derivative is computed as:

dθEdtΔθEΔt=θE(t)θE(tΔt)Δt\frac{d\theta_E}{dt} \approx \frac{\Delta\theta_E}{\Delta t} = \frac{\theta_E(t) - \theta_E(t-\Delta t)}{\Delta t}

With angle wraparound correction:

ΔθE={θE(t)θE(tΔt)+360°if Δθ<180°θE(t)θE(tΔt)360°if Δθ>+180°θE(t)θE(tΔt)otherwise\Delta\theta_E = \begin{cases} \theta_E(t) - \theta_E(t-\Delta t) + 360° & \text{if } \Delta\theta < -180° \\ \theta_E(t) - \theta_E(t-\Delta t) - 360° & \text{if } \Delta\theta > +180° \\ \theta_E(t) - \theta_E(t-\Delta t) & \text{otherwise} \end{cases}

Calculate ERD once in column DR:

EXCEL HELPER: ERD in column DR (Legacy Excel)
=IF(AI2738-AI2737<-180,(AI2738-AI2737+360)/(A2738-A2737),IF(AI2738-AI2737>180,(AI2738-AI2737-360)/(A2738-A2737),(AI2738-AI2737)/(A2738-A2737)))-360/20868

Where: A = Year, AI = Earth Perihelion. This calculates the rate from the previous row, handling angle wraparound at ±180°.

Shared Column References

ColumnContentUsed By
AYearAll formulas
AIEarth Perihelion (degrees)Mercury, Venus, ERD
DHMercury Perihelion (degrees)Mercury
DXVenus Perihelion (degrees)Venus
UObliquity (degrees)Mercury, Venus
FEarth EccentricityMercury
DREarth Rate Deviation (ERD)Mercury, Venus

Mercury Fluctuation Formula (Using Observed Angles)

Scientific Notation:

FM=Fgeom+Fphase+FERD+Fext+Faux+CF_M = F_{\text{geom}} + F_{\text{phase}} + F_{\text{ERD}} + F_{\text{ext}} + F_{\text{aux}} + C

Geometric Terms:

Fgeom=a1sin(δ)cos(σ)+a2cos(σ)+a3sin(σ)+a4cos(2θM)+a5sin(2θM)+a6cos(2θE)F_{\text{geom}} = a_1 |\sin(\delta)| \cos(\sigma) + a_2 \cos(\sigma) + a_3 \sin(\sigma) + a_4 \cos(2\theta_M) + a_5 \sin(2\theta_M) + a_6 \cos(2\theta_E)

Where δ=θEθM\delta = \theta_E - \theta_M (relative angle) and σ=θE+θM\sigma = \theta_E + \theta_M (sum angle).

With coefficients: a1=27a_1 = -27, a2=7a_2 = -7, a3=+7a_3 = +7, a4=441a_4 = -441, a5=+173a_5 = +173, a6=+7a_6 = +7

Phase (Periodic) Terms:

Fphase=i[bisin(2πtTi)+cicos(2πtTi)]F_{\text{phase}} = \sum_{i} \left[ b_i \sin\left(\frac{2\pi t}{T_i}\right) + c_i \cos\left(\frac{2\pi t}{T_i}\right) \right]

Where tt = Year + 301,340 and periods TiT_i are: 7,163; 19,206; 121,414; 28,185; 111,296; 66,778; 11,038; 12,521; 9,820; 20,868; 242,828 years.

ERD (Earth Rate Deviation) Terms:

FERD=d1ERD+d2ERDcos(δ)+d3ERDsin(δ)F_{\text{ERD}} = d_1 \cdot \text{ERD} + d_2 \cdot \text{ERD} \cos(\delta) + d_3 \cdot \text{ERD} \sin(\delta) +d4ERDcos(2δ)+d5ERDsin(2δ)+d6ERD2+d7(εε0)ERD+ d_4 \cdot \text{ERD} \cos(2\delta) + d_5 \cdot \text{ERD} \sin(2\delta) + d_6 \cdot \text{ERD}^2 + d_7 \cdot (\varepsilon - \varepsilon_0) \cdot \text{ERD}

With coefficients: d1=+21,322d_1 = +21,322, d2=+81,832d_2 = +81,832, d3=+2,702d_3 = +2,702, d4=620d_4 = -620, d5=+786d_5 = +786, d6=+853,292d_6 = +853,292, d7=403d_7 = -403

ERD × Periodic, ERD² × Periodic, and Triple Interactions:

Fext=i[ERDfisin(2πtTi)+ERDgicos(2πtTi)]F_{\text{ext}} = \sum_{i} \left[ \text{ERD} \cdot f_i \sin\left(\frac{2\pi t}{T_i}\right) + \text{ERD} \cdot g_i \cos\left(\frac{2\pi t}{T_i}\right) \right] +j[ERD2hjsin(2πtTj)+ERD2kjcos(2πtTj)]+ \sum_{j} \left[ \text{ERD}^2 \cdot h_j \sin\left(\frac{2\pi t}{T_j}\right) + \text{ERD}^2 \cdot k_j \cos\left(\frac{2\pi t}{T_j}\right) \right] +Triple interactions: ERD×periodic×cos/sin(nδ) for n=1,2+ \text{Triple interactions: } \text{ERD} \times \text{periodic} \times \cos/\sin(n\delta) \text{ for } n = 1, 2

Key ERD² × Periodic coefficients: +1,784,775 · ERD² cos(t/20868), −1,134,935 · ERD² sin(t/20868), +1,123,268 · ERD² sin(t/121414), +823,617 · ERD² cos(t/111296)

Higher Harmonics:

Fharm=cos(3θM)+cos(4θM)+sin(4θM)+cos(3δ)+sin(3δ)F_{\text{harm}} = \cos(3\theta_M) + \cos(4\theta_M) + \sin(4\theta_M) + \cos(3\delta) + \sin(3\delta)

Auxiliary Terms:

Faux=e1(εε0)+e2(ee0)F_{\text{aux}} = e_1 \cdot (\varepsilon - \varepsilon_0) + e_2 \cdot (e - e_0)

With coefficients: e1=+12e_1 = +12 (obliquity), e2=+478,089e_2 = +478,089 (eccentricity), ε0=23.414°\varepsilon_0 = 23.414°, e0=0.015387e_0 = 0.015387 (these are legacy Excel coefficients; Python observed formula uses retrained coefficients)

Result units: arcseconds per century (″/century)

EXCEL FORMULA MERCURY FLUCTUATION (Legacy Excel)
=-27*ABS(SIN((AI2738-DH2738)*PI()/180))*COS((AI2738+DH2738)*PI()/180)-7*COS((AI2738+DH2738)*PI()/180)+7*SIN((AI2738+DH2738)*PI()/180)-441*COS(2*DH2738*PI()/180)+173*SIN(2*DH2738*PI()/180)+7*COS(2*AI2738*PI()/180)+16*SIN(2*PI()*(A2738+301340)/7163)+4*COS(2*PI()*(A2738+301340)/7163)+18*SIN(2*PI()*(A2738+301340)/19206)-56*COS(2*PI()*(A2738+301340)/19206)+1*SIN(2*PI()*(A2738+301340)/121414)+431*COS(2*PI()*(A2738+301340)/121414)+24*SIN(2*PI()*(A2738+301340)/28185)+17*COS(2*PI()*(A2738+301340)/28185)-1*SIN(2*PI()*(A2738+301340)/111296)+4*COS(2*PI()*(A2738+301340)/111296)-2*SIN(2*PI()*(A2738+301340)/66778)+1*COS(2*PI()*(A2738+301340)/66778)+3*SIN(2*PI()*(A2738+301340)/11038)+1*COS(2*PI()*(A2738+301340)/11038)+1*SIN(2*PI()*(A2738+301340)/12521)-8*COS(2*PI()*(A2738+301340)/12521)-1*SIN(2*PI()*(A2738+301340)/9820)+3*COS(2*PI()*(A2738+301340)/9820)+12*(U2738-23.414)+478089*(F2738-0.015354)+21322*DR2738+81832*DR2738*COS((AI2738-DH2738)*PI()/180)+2702*DR2738*SIN((AI2738-DH2738)*PI()/180)-620*DR2738*COS(2*(AI2738-DH2738)*PI()/180)+786*DR2738*SIN(2*(AI2738-DH2738)*PI()/180)+853292*DR2738*DR2738-403*(U2738-23.414)*DR2738+4*COS(3*DH2738*PI()/180)-15*COS(4*DH2738*PI()/180)+9*SIN(4*DH2738*PI()/180)+3*COS(3*(AI2738-DH2738)*PI()/180)+2*SIN(3*(AI2738-DH2738)*PI()/180)+895*DR2738*COS(3*(AI2738-DH2738)*PI()/180)+232*DR2738*SIN(3*(AI2738-DH2738)*PI()/180)+603*DR2738*SIN(2*PI()*(A2738+301340)/7163)-176*DR2738*COS(2*PI()*(A2738+301340)/7163)-1677*DR2738*SIN(2*PI()*(A2738+301340)/20868)-10336*DR2738*COS(2*PI()*(A2738+301340)/20868)-7327*DR2738*SIN(2*PI()*(A2738+301340)/121414)+395*DR2738*COS(2*PI()*(A2738+301340)/121414)+20103*DR2738*SIN(2*PI()*(A2738+301340)/19206)+62079*DR2738*COS(2*PI()*(A2738+301340)/19206)-4451*DR2738*SIN(2*PI()*(A2738+301340)/28185)+3083*DR2738*COS(2*PI()*(A2738+301340)/28185)+3607*DR2738*SIN(2*PI()*(A2738+301340)/111296)-5291*DR2738*COS(2*PI()*(A2738+301340)/111296)-132402*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/7163)+36800*DR2738*DR2738*COS(2*PI()*(A2738+301340)/7163)-1134935*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/20868)+1784775*DR2738*DR2738*COS(2*PI()*(A2738+301340)/20868)+1123268*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/121414)+416835*DR2738*DR2738*COS(2*PI()*(A2738+301340)/121414)-623746*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/111296)+823617*DR2738*DR2738*COS(2*PI()*(A2738+301340)/111296)+197457*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/19206)+152907*DR2738*DR2738*COS(2*PI()*(A2738+301340)/19206)+7828*DR2738*SIN(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)+4336*DR2738*SIN(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)-6657*DR2738*SIN(2*PI()*(A2738+301340)/7163)*COS(2*(AI2738-DH2738)*PI()/180)+22805*DR2738*SIN(2*PI()*(A2738+301340)/7163)*SIN(2*(AI2738-DH2738)*PI()/180)+5325*DR2738*COS(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)-7226*DR2738*COS(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)+22722*DR2738*COS(2*PI()*(A2738+301340)/7163)*COS(2*(AI2738-DH2738)*PI()/180)+6210*DR2738*COS(2*PI()*(A2738+301340)/7163)*SIN(2*(AI2738-DH2738)*PI()/180)+40984*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-7570*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)+314*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DH2738)*PI()/180)+1977*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DH2738)*PI()/180)-12433*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-38981*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)+1015*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DH2738)*PI()/180)-139*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DH2738)*PI()/180)+31407*DR2738*SIN(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)+25110*DR2738*SIN(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)-21*DR2738*SIN(2*PI()*(A2738+301340)/121414)*COS(2*(AI2738-DH2738)*PI()/180)-13622*DR2738*SIN(2*PI()*(A2738+301340)/121414)*SIN(2*(AI2738-DH2738)*PI()/180)-16012*DR2738*COS(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)+40263*DR2738*COS(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+12136*DR2738*COS(2*PI()*(A2738+301340)/121414)*COS(2*(AI2738-DH2738)*PI()/180)+260*DR2738*COS(2*PI()*(A2738+301340)/121414)*SIN(2*(AI2738-DH2738)*PI()/180)-15*SIN(2*PI()*(A2738+301340)/242828)-135*COS(2*PI()*(A2738+301340)/242828)-14713*DR2738*SIN(2*PI()*(A2738+301340)/242828)-35146*DR2738*COS(2*PI()*(A2738+301340)/242828)-3*SIN(2*PI()*(A2738+301340)/20868)+650*COS(2*PI()*(A2738+301340)/20868)+2*SIN(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)-4*SIN(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)-2*COS(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)+137*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)+13*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)-122*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-134*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)-29*SIN(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)-148*SIN(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+114*COS(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)-14*COS(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+22

Excel Formula Notes (Legacy):

  • This Excel formula is a legacy approximation (~104 terms) with manually rounded coefficients
  • Period constants may differ slightly from current Python implementation
  • The eccentricity mean in this formula (0.015354) has been updated to 0.015387 in the Python code; this Excel formula uses legacy coefficients
  • For accurate calculations: Use /docs/observed_formula.py (R² = 1.0000, RMSE = 0.08″/cy, 225 terms)
  • Predictive formula: R² = 0.9986, RMSE = 2.83″/cy (106 terms) — see Section 4

Predicted Values

YearFluctuation
1912~43″/century
2023~38″/century
2689~4″/century
3244~-26″/century

The model predicts this value will DECREASE over time. See Section 11 for detailed analysis.

Venus Fluctuation Formula (Using Observed Angles)

Venus presents a fundamentally different challenge than Mercury. With an eccentricity of only 0.00678 (compared to Mercury’s 0.20564), Venus has a nearly circular orbit where geometric modulation effects are minimal. Instead, Venus’s fluctuation is dominated by variations in Earth’s axial precession rate (ERD² terms).

Formula Summary:

  • R² = 1.0000 (explains 100% of variance)
  • RMSE = 0.27 arcsec/century
  • Features: 328 terms (V3_VENUS optimized matrix)
  • Key drivers: ERD² × periodic terms, ERD³ terms, ERD × obliquity/eccentricity coupling, 3δ and 4δ harmonics

For the complete coefficient breakdown and physical explanation, see Section 5.

Uses the shared ERD helper from column DR (see above for ERD calculation).

Scientific Notation:

FV=Frel+FERD+Fangle+Fphase+FERD×phase+Fphase×angle+FERD×phase×angle+FERD²×phase+F+CF_V = F_{\text{rel}} + F_{\text{ERD}} + F_{\text{angle}} + F_{\text{phase}} + F_{\text{ERD×phase}} + F_{\text{phase×angle}} + F_{\text{ERD×phase×angle}} + F_{\text{ERD²×phase}} + F_{\text{3δ}} + C

Relative Angle Terms (δ=θEθV\delta = \theta_E - \theta_V):

Frel=a1cosδ+a2sinδ+a3cos(2δ)+a4sin(2δ)+a5cos(3δ)+a6sin(3δ)+a7cos(4δ)+a8sin(4δ)F_{\text{rel}} = a_1 \cos\delta + a_2 \sin\delta + a_3 \cos(2\delta) + a_4 \sin(2\delta) + a_5 \cos(3\delta) + a_6 \sin(3\delta) + a_7 \cos(4\delta) + a_8 \sin(4\delta)

With coefficients: a1=+1,037a_1 = +1,037, a2=1,312a_2 = -1,312, a3=+80a_3 = +80, a4=+860a_4 = +860, a5=+33a_5 = +33, a6=44a_6 = -44, a7=14a_7 = -14, a8=+10a_8 = +10

ERD Terms:

FERD=b1ERD+b2ERDcosδ+b3ERDsinδ+b4ERDcos(2δ)+b5ERDsin(2δ)+b6ERD2F_{\text{ERD}} = b_1 \cdot \text{ERD} + b_2 \cdot \text{ERD} \cos\delta + b_3 \cdot \text{ERD} \sin\delta + b_4 \cdot \text{ERD} \cos(2\delta) + b_5 \cdot \text{ERD} \sin(2\delta) + b_6 \cdot \text{ERD}^2

With coefficients: b1=358,356b_1 = -358,356, b2=234,829b_2 = -234,829, b3=11,488b_3 = -11,488, b4=1,038,655b_4 = -1,038,655, b5=+570,929b_5 = +570,929, b6=112,855,487b_6 = -112,855,487

Individual Angle Terms:

Fangle=c1cosθE+c2sinθE+c3cos(2θE)+c4sin(2θE)+c5cosθV+c6sinθV+c7cos(2θV)+c8sin(2θV)F_{\text{angle}} = c_1 \cos\theta_E + c_2 \sin\theta_E + c_3 \cos(2\theta_E) + c_4 \sin(2\theta_E) + c_5 \cos\theta_V + c_6 \sin\theta_V + c_7 \cos(2\theta_V) + c_8 \sin(2\theta_V)

With coefficients: c1=2,884c_1 = -2,884, c2=+1,205c_2 = +1,205, c3=284c_3 = -284, c4=+26c_4 = +26, c5=+4,084c_5 = +4,084, c6=7,418c_6 = -7,418, c7=1,670c_7 = -1,670, c8=+931c_8 = +931

Phase (Periodic) Terms:

Fphase=i[disin(2πtTi)+eicos(2πtTi)]F_{\text{phase}} = \sum_{i} \left[ d_i \sin\left(\frac{2\pi t}{T_i}\right) + e_i \cos\left(\frac{2\pi t}{T_i}\right) \right]

Where tt = Year + 301,340 and periods TiT_i are: 667,776; 333,888; 111,296; 41,736; 20,868; 6,956 years.

ERD × Periodic Terms:

FERD×phase=jERD[gjsin(2πtPj)+hjcos(2πtPj)]F_{\text{ERD×phase}} = \sum_{j} \text{ERD} \cdot \left[ g_j \sin\left(\frac{2\pi t}{P_j}\right) + h_j \cos\left(\frac{2\pi t}{P_j}\right) \right]

Where periods PjP_j are: 20,868; 667,776; 333,888; 111,296; 41,736; 6,956 years. See component table for coefficients.

Periodic × Angle Terms (amplitude modulation when ERD is small):

Fphase×angle=k[sin(2πtTk)(pkcosδ+qksinδ)+cos(2πtTk)(rkcosδ+sksinδ)]F_{\text{phase×angle}} = \sum_{k} \left[ \sin\left(\frac{2\pi t}{T_k}\right) (p_k \cos\delta + q_k \sin\delta) + \cos\left(\frac{2\pi t}{T_k}\right) (r_k \cos\delta + s_k \sin\delta) \right]

Key terms for T=20,868T = 20,868: p=5,921p = -5,921, q=+7,926q = +7,926, r=19,742r = -19,742, s=+22,347s = +22,347

ERD × Periodic × Angle Terms (triple interaction):

FERD×phase×angle=mERD[sin(2πtPm)(umcosδ+vmsinδ)+cos(2πtPm)(wmcosδ+xmsinδ)]F_{\text{ERD×phase×angle}} = \sum_{m} \text{ERD} \cdot \left[ \sin\left(\frac{2\pi t}{P_m}\right) (u_m \cos\delta + v_m \sin\delta) + \cos\left(\frac{2\pi t}{P_m}\right) (w_m \cos\delta + x_m \sin\delta) \right]

Key terms for P=20,868P = 20,868: u=+125,840u = +125,840, v=5,657,660v = -5,657,660, w=8,035,742w = -8,035,742, x=+1,630,420x = +1,630,420

ERD² × Periodic Terms (quadratic rate modulation):

FERD²×phase=nERD2[fnsin(2πtPn)+gncos(2πtPn)]F_{\text{ERD²×phase}} = \sum_{n} \text{ERD}^2 \cdot \left[ f_n \sin\left(\frac{2\pi t}{P_n}\right) + g_n \cos\left(\frac{2\pi t}{P_n}\right) \right]

Key terms: f20868=+99,207,877f_{20868} = +99,207,877, g20868=+111,052,242g_{20868} = +111,052,242, g667776=+286,162,990g_{667776} = +286,162,990

Higher Harmonic Terms (3δ):

F3δ=pERD[sin(2πtPp)(apcos(3δ)+bpsin(3δ))+cos(2πtPp)(cpcos(3δ)+dpsin(3δ))]F_{3\delta} = \sum_{p} \text{ERD} \cdot \left[ \sin\left(\frac{2\pi t}{P_p}\right) (a_p \cos(3\delta) + b_p \sin(3\delta)) + \cos\left(\frac{2\pi t}{P_p}\right) (c_p \cos(3\delta) + d_p \sin(3\delta)) \right]

Key terms for P=20,868P = 20,868: a=426,328a = -426,328, b=246,344b = -246,344, c=490,205c = -490,205, d=+493,871d = +493,871

Constant: C=+984C = +984

Result units: arcseconds per century (″/century)

Note (Legacy): This Excel formula is a legacy approximation simplified to fit Excel’s 8,192 character limit. Some period terms have been removed and coefficients are manually rounded. For accurate calculations: Use /docs/observed_formula.py (R² = 1.0000, RMSE = 0.27″/cy, 328 terms).

EXCEL FORMULA VENUS FLUCTUATION (Legacy Excel)
=1037*COS((AI2738-DX2738)*PI()/180)-1312*SIN((AI2738-DX2738)*PI()/180)+80*COS(2*(AI2738-DX2738)*PI()/180)+860*SIN(2*(AI2738-DX2738)*PI()/180)+33*COS(3*(AI2738-DX2738)*PI()/180)-44*SIN(3*(AI2738-DX2738)*PI()/180)-14*COS(4*(AI2738-DX2738)*PI()/180)+10*SIN(4*(AI2738-DX2738)*PI()/180)-2884*COS(AI2738*PI()/180)+1205*SIN(AI2738*PI()/180)-284*COS(2*AI2738*PI()/180)+26*SIN(2*AI2738*PI()/180)+4084*COS(DX2738*PI()/180)-7418*SIN(DX2738*PI()/180)-1670*COS(2*DX2738*PI()/180)+931*SIN(2*DX2738*PI()/180)-358356*DR2738-234829*DR2738*COS((AI2738-DX2738)*PI()/180)-11488*DR2738*SIN((AI2738-DX2738)*PI()/180)-1038655*DR2738*COS(2*(AI2738-DX2738)*PI()/180)+570929*DR2738*SIN(2*(AI2738-DX2738)*PI()/180)-112855487*DR2738*DR2738+5859*SIN(2*PI()*(A2738+301340)/667776)+8260*COS(2*PI()*(A2738+301340)/667776)+395*SIN(2*PI()*(A2738+301340)/333888)+746*COS(2*PI()*(A2738+301340)/333888)+39*SIN(2*PI()*(A2738+301340)/41736)-7833*SIN(2*PI()*(A2738+301340)/20868)-2925*COS(2*PI()*(A2738+301340)/20868)-135*SIN(2*PI()*(A2738+301340)/6956)+229*COS(2*PI()*(A2738+301340)/6956)-4863030*DR2738*SIN(2*PI()*(A2738+301340)/667776)+4374726*DR2738*COS(2*PI()*(A2738+301340)/667776)+322475*DR2738*SIN(2*PI()*(A2738+301340)/333888)-172362*DR2738*COS(2*PI()*(A2738+301340)/333888)+8125*DR2738*SIN(2*PI()*(A2738+301340)/41736)+17121*DR2738*COS(2*PI()*(A2738+301340)/41736)+3346580*DR2738*SIN(2*PI()*(A2738+301340)/20868)+1163334*DR2738*COS(2*PI()*(A2738+301340)/20868)-46310*DR2738*SIN(2*PI()*(A2738+301340)/6956)-61608*DR2738*COS(2*PI()*(A2738+301340)/6956)-5921*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+7926*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-19742*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+22347*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-2837*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+4176*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)+5363*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+2331*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)+7621*SIN(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)-12107*SIN(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)+12298*COS(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)-2692*COS(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-17370*SIN(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-3035*SIN(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+2123*COS(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-17304*COS(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)-707*SIN(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)+665*SIN(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-833*COS(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)-414*COS(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-918*SIN(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)+1582*SIN(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)-1728*COS(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-1133*COS(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)+125840*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)-5657660*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-8035742*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+1630420*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-1775121*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)-3139592*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)-2702485*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+986428*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)-2166058*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)+6117614*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-171831*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)+1334347*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-371905*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-289032*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+1323251*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-786120*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+306909*DR2738*SIN(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)-86179*DR2738*SIN(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-427267*DR2738*COS(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)+507766*DR2738*COS(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-376674*DR2738*SIN(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-180509*DR2738*SIN(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)+226744*DR2738*COS(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-375559*DR2738*COS(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)-1187*SIN(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+205*SIN(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)+342*COS(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+339*COS(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-128955*DR2738*SIN(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+77955*DR2738*SIN(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-47034*DR2738*COS(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+36966*DR2738*COS(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-37979*DR2738*SIN(2*PI()*(A2738+301340)/41736)*COS((AI2738-DX2738)*PI()/180)-5593*DR2738*SIN(2*PI()*(A2738+301340)/41736)*SIN((AI2738-DX2738)*PI()/180)+9982*DR2738*COS(2*PI()*(A2738+301340)/41736)*COS((AI2738-DX2738)*PI()/180)+6997*DR2738*COS(2*PI()*(A2738+301340)/41736)*SIN((AI2738-DX2738)*PI()/180)+50061905*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/667776)+286162990*DR2738*DR2738*COS(2*PI()*(A2738+301340)/667776)-52734896*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/333888)+11348620*DR2738*DR2738*COS(2*PI()*(A2738+301340)/333888)+99207877*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/20868)+111052242*DR2738*DR2738*COS(2*PI()*(A2738+301340)/20868)-426328*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(3*(AI2738-DX2738)*PI()/180)-246344*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(3*(AI2738-DX2738)*PI()/180)-490205*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(3*(AI2738-DX2738)*PI()/180)+493871*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(3*(AI2738-DX2738)*PI()/180)+120*SIN(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)+466*SIN(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)+308*COS(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)-39764*DR2738*SIN(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)-45035*DR2738*SIN(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)-32422*DR2738*COS(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)+72034*DR2738*COS(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)+141083*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS(3*(AI2738-DX2738)*PI()/180)-80015*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN(3*(AI2738-DX2738)*PI()/180)+69508*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS(3*(AI2738-DX2738)*PI()/180)+25816*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN(3*(AI2738-DX2738)*PI()/180)+984

All Planets: Python Implementation Reference

All planetary formulas are implemented in Python for consistency and to handle the complex feature matrices (up to 328 terms for Venus). The Python scripts support both Mercury and Venus as well as the outer planets.

Column References:

ColumnContentUsed By
AYearAll planets
AIEarth Perihelion (degrees)All planets
DREarth Rate Deviation (ERD)All planets
UObliquity (degrees)All planets
FEarth EccentricityAll planets
DHMercury Perihelion (degrees)Mercury
DXVenus Perihelion (degrees)Venus
AKMars Perihelion (degrees)Mars
ATJupiter Perihelion (degrees)Jupiter
BCSaturn Perihelion (degrees)Saturn
BLUranus Perihelion (degrees)Uranus
BUNeptune Perihelion (degrees)Neptune

Formula Summary (Using Observed Perihelion):

PlanetRMSE (″/cy)FeaturesPeriod (years)
Mercury1.00000.08225242,828 (H×8/11)
Venus1.00000.27328667,776 (H×2)
Mars1.00000.0222577,051 (H×3/13)
Jupiter1.00000.0322566,778 (H/5)
Saturn1.00000.0322541,736 (H/8)
Uranus1.00000.01225111,296 (H/3)
Neptune1.00000.01225667,776 (H×2)

Python Implementation: A unified Python script provides all implementations:

Main script: /docs/observed_formula.py — Calculates precession fluctuation for all 7 planets (Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune) using observed perihelion data from the CSV file.

Supporting files:

  • /docs/train_observed.py — Training script for observed formula coefficients (SVD-based least-squares)
  • /docs/train_precession.py — Training script for predictive formula coefficients (ridge regression)
  • Coefficient files: mercury_coeffs.py, venus_coeffs.py, mars_coeffs.py, jupiter_coeffs.py, saturn_coeffs.py, uranus_coeffs.py, neptune_coeffs.py

Venus uses a specialized V3_VENUS feature matrix with 328 terms (including ERD³, 4δ harmonics, and obliquity/eccentricity coupling) to achieve 0.27 arcsec accuracy. Other planets use the standard 225-term V2 matrix.


Return to Formulas for the practical cookbook, or Scientific Background for the model explanation.

Last updated on: