Formula Derivation and Analysis
This page documents how the planetary precession formulas were derived — the physical reasoning, mathematical relationships, and coefficient breakdowns. For the practical “cookbook” formulas, see Formulas. For the model explanation, see Scientific Background.
Purpose of this document: Understanding why the formulas work, not just how to use them. This is valuable for researchers who want to verify, extend, or critique the model.
Quick Reference
| Term | Value | Meaning |
|---|---|---|
| Holistic-Year (H) | 333,888 years | Master cycle from which all periods derive via Fibonacci fractions |
| Anchor Year | −301,340 (301,340 BC) | Year zero of the current Holistic cycle; formulas use Year + 301340 |
| ERD | Earth Rate Deviation | Difference between instantaneous and mean Earth perihelion rate (°/year); see Section 14 |
Formula Types
| Type | Input Requirements | Best Accuracy | Use Case |
|---|---|---|---|
| Observed | Year + observed angles from CSV | R² = 1.0000 for all planets | Model validation, research |
| Predictive | Year only | R² > 0.998 for all 7 planets | Standalone predictions |
Observed vs Predictive: The “observed” formulas use actual planetary positions from orbital data (the CSV file) as inputs. The “predictive” formulas calculate everything from just the year. Predictive formulas now exist for all 7 planets (Mercury through Neptune) with R² > 0.998. See Formulas: Predictive Formulas for complete details and Python implementation.
Contents
- Fibonacci Hierarchy in Orbital Periods
- Saturn-Jupiter-Earth Resonance Loop
- Mercury Formula: Key Combination Periods
- Mercury Formula: Coefficient Breakdown (Predictive)
- Venus Formula: Coefficient Breakdown (Observed)
- Mars Formula: Coefficient Breakdown
- Jupiter Formula: Coefficient Breakdown
- Saturn Formula: Coefficient Breakdown
- Uranus Formula: Coefficient Breakdown
- Neptune Formula: Coefficient Breakdown
- Time-Varying Fluctuation
- Planetary Physical Comparison
- Uncertainties and Limitations
- Observed-Angle Formulas (Using Observational Data) — includes ERD definition & formulas
1. Fibonacci Hierarchy in Orbital Periods
A remarkable pattern emerges when dividing the Holistic-Year by Fibonacci numbers. The resulting periods correspond to major planetary cycles:
| Fibonacci | H/F | Period (years) | Astronomical Meaning |
|---|---|---|---|
| 3 | H/3 | 111,296 | Earth true perihelion precession |
| 5 | H/5 | 66,778 | Jupiter perihelion precession |
| 8 | H/8 | 41,736 | Saturn perihelion precession |
| 13 | H/13 | 25,684 | Axial precession |
| 21 | H/21 | 15,899 | Saturn + Axial beat frequency |
| 34 | H/34 | 9,820 | Earth + Saturn beat frequency |
| 55 | H/55 | 6,071 | Higher-order resonance |
| 89 | H/89 | 3,752 | Higher-order resonance |
Beat Frequency Rule: Just as Fibonacci numbers add (F(n) + F(n+1) = F(n+2)), the corresponding beat frequencies follow the same pattern:
1/H(n) + 1/H(n+1) = 1/H(n+2)For example:
- 1/H(3) + 1/H(5) = 1/111,296 + 1/66,778 = 1/41,736 = 1/H(8) ✓
- 1/H(5) + 1/H(8) = 1/66,778 + 1/41,736 = 1/25,684 = 1/H(13) ✓
- 1/H(8) + 1/H(13) = 1/41,736 + 1/25,684 = 1/15,899 = 1/H(21) ✓
Connection to Golden Ratio: The Fibonacci sequence converges to the golden ratio φ ≈ 1.618. The ratios of consecutive H/F periods approach φ: 111,296/66,778 ≈ 1.667, 66,778/41,736 ≈ 1.600, etc. The solar system’s major cycles appear to be organized around this mathematical constant.
2. Saturn-Jupiter-Earth Resonance Loop
A remarkable discovery emerges when analyzing the planetary precession periods: Saturn’s retrograde precession creates a closed resonance loop with Jupiter and Earth that explains why certain periods appear in the Mercury fluctuation formula.
Saturn’s Unique Motion: Saturn is the only planet whose perihelion precesses retrograde (opposite to orbital motion) with a period of ~41,736 years. All other planets precess prograde. This creates beat frequencies when combined with prograde periods.
The Resonance Loop:
| Relationship | Calculation | Result |
|---|---|---|
| 1/Jupiter + 1/Saturn | 1/66,778 + 1/41,736 | = 1/25,684 = Axial precession (H/13) |
| 1/Jupiter − 1/Saturn | 1/66,778 − 1/41,736 | = 1/111,296 = Earth true perihelion |
| 1/Earth_true − 1/Saturn | 1/111,296 − 1/41,736 | = 1/66,778 = Jupiter |
This is a closed loop: Starting from any one period, you can derive the others through beat frequency relationships. The three major solar system cycles are mathematically interlinked:
Jupiter (66,778) ←──────────────────────→ Saturn (41,736)
↑ │
│ beat frequencies │
│ ↓
Earth true perihelion (111,296) ←───── Axial precession (25,684)Physical Interpretation: When Saturn’s retrograde wobble interacts with Jupiter’s prograde wobble:
- Their sum frequency matches Earth’s axial precession
- Their difference frequency matches Earth’s true perihelion period
- This suggests the solar system’s major cycles are coupled through gravitational resonances
3. Mercury Formula: Key Combination Periods
Mercury’s formula is more complex than other planets because three movements interact to create frequency mixing:
- Earth’s effective perihelion: 20,868 years (from axial + true perihelion)
- Earth’s true perihelion: 111,296 years
- Mercury’s perihelion: 242,828 years
When these angular rates combine, they create new “sideband” frequencies through amplitude modulation — similar to how radio signals mix frequencies.
Mixing Frequencies
| Combination | Period (years) | Holistic-Year Fraction | Derivation |
|---|---|---|---|
| φ_E + φ_M (sum) | 19,206 | 1/17.4 | Earth + Mercury mixing |
| φ_E - φ_M (diff) | 22,845 | 1/14.6 | Earth − Mercury mixing |
| 2×(φ_E - φ_M) + (φ_E + φ_M) | 7,163 | 1/46.6 | Dominant mixing frequency |
| 2×(φ_E - φ_M) - (φ_E + φ_M) | 28,185 | 1/11.8 | Difference mixing frequency |
| 2×φ_M | 121,414 | ~1/2.75 | Mercury double-angle |
| H/5 (Jupiter perihelion) | 66,778 | 1/5 | Saturn-Jupiter resonance |
| Mercury/22 | 11,038 | ~1/30.3 | Mercury harmonic |
| Saturn×0.30 | 12,521 | ~1/26.7 | Saturn fraction |
| H/34 (Fibonacci) | 9,820 | 1/34 | Earth + Saturn beat |
| Saturn/10 − Mercury beat | ~4,254 | ~1/78.5 | 1/(1/4174 − 1/242828) |
| Mercury/51 | ~4,761 | ~1/70.1 | Mercury harmonic |
Where:
- φ_E = effective Earth angle = 360°/20,868 × t
- φ_M = Mercury angle = 360°/242,828 × t
- t = YEAR + 301340
Derived Shorter Periods
All periods in the formula have physical derivations:
| Period | Value | Physical Derivation | Calculation |
|---|---|---|---|
| 11,038 | Mercury/22 | Mercury harmonic | 242,828 ÷ 22 = 11,038 |
| 12,521 | Saturn×0.30 | Saturn fraction | 41,736 × 0.30 = 12,521 |
| 9,820 | H/34 | Fibonacci hierarchy | 333,888 ÷ 34 = 9,820 |
| 4,254 | Saturn/10 − Mercury beat | Beat frequency | 1/(1/4,174 − 1/242,828) = 4,254 |
| 4,761 | Mercury/51 | Mercury harmonic | 242,828 ÷ 51 = 4,761 |
| 3,669 | Mars/21 | Mars Fibonacci harmonic | 77,051 ÷ 21 = 3,669 |
Note: The periods are all physically derived from Mercury, Jupiter, Saturn, or Fibonacci harmonics.
Why this matters: Every period in the Mercury fluctuation formula can now be traced to a physical origin — either a planetary harmonic (Mercury/22, Mercury/51), a Saturn fraction, or a beat frequency between orbital cycles. This transforms the formula from an empirical curve-fit into a physically-grounded model.
4. Mercury Formula: Coefficient Breakdown (Predictive Formula)
Formula Type: This section documents the legacy 106-term predictive formula (year-only input, R² = 0.9986, RMSE = 2.83″/cy). This has been superseded by the unified 273-term system (R² = 0.9990, RMSE = 2.44″/cy) — see Formulas: Predictive Formulas. The coefficient breakdown below remains valid as a reference for the formula’s physical structure. For the observed formula (uses CSV data, 225 terms, R² = 1.0000), see Section 14.
The Mercury predictive fluctuation formula achieves R² = 0.9986 using 106 non-zero coefficients organized into categories:
4.1 Geometric Terms (6 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| |sin(δ)|×cos(σ) | -27 | Geometric | Amplitude modulation |
| cos(σ) | -7 | Geometric | Sum angle |
| sin(σ) | +7 | Geometric | Sum angle |
| cos(2θM) | -441 | Observed | Mercury double-angle |
| sin(2θM) | +173 | Observed | Mercury double-angle |
| cos(2θE) | +7 | Observed | Earth double-angle |
Where δ = θ_E - θ_M (relative angle) and σ = θ_E + θ_M (sum angle).
4.2 Phase Terms (26 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| sin(t/7163) | +16 | Phase | Dominant mixing frequency |
| cos(t/7163) | +4 | Phase | Mixing frequency |
| sin(t/19206) | +18 | Phase | Sum frequency |
| cos(t/19206) | -56 | Phase | Sum frequency |
| sin(t/121414) | +1 | Phase | 2×Mercury period |
| cos(t/121414) | +431 | Phase | 2×Mercury period |
| sin(t/28185) | +24 | Phase | Difference frequency |
| cos(t/28185) | +17 | Phase | Difference frequency |
| sin(t/111296) | -1 | Phase | Earth true perihelion |
| cos(t/111296) | +4 | Phase | Earth true perihelion |
| sin(t/66778) | -2 | Phase | Jupiter period |
| cos(t/66778) | +1 | Phase | Jupiter period |
| sin(t/11038) | +3 | Phase | Mercury/22 harmonic |
| cos(t/11038) | +1 | Phase | Mercury/22 harmonic |
| sin(t/12521) | +1 | Phase | Saturn×0.30 fraction |
| cos(t/12521) | -8 | Phase | Saturn×0.30 fraction |
| sin(t/9820) | -1 | Phase | H/34 Fibonacci period |
| cos(t/9820) | +3 | Phase | H/34 Fibonacci period |
| sin(t/20868) | -3 | Phase | Earth effective perihelion |
| cos(t/20868) | +650 | Phase | Earth effective perihelion |
| sin(t/242828) | -15 | Phase | Mercury perihelion |
| cos(t/242828) | -135 | Phase | Mercury perihelion |
4.3 Auxiliary Terms (2 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| (Obliquity-23.414) | +12 | Observed | Obliquity effect |
| (Eccentricity-0.015387) | +478,089 | Observed | Eccentricity effect (see note) |
Note: The eccentricity mean has been updated to . The Python observed formula coefficients have been retrained against this value. The coefficient +478,089 shown here is from the legacy Excel approximation.
4.4 ERD Basic Terms (7 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| ERD | +21,322 | Rate | Earth Rate Deviation (linear) |
| ERD×cos(δ) | +81,832 | Rate | ERD angle interaction |
| ERD×sin(δ) | +2,702 | Rate | ERD angle interaction |
| ERD×cos(2δ) | -620 | Rate | ERD double-angle interaction |
| ERD×sin(2δ) | +786 | Rate | ERD double-angle interaction |
| ERD² | +853,292 | Rate | ERD quadratic term |
| Obliq×ERD | -403 | Rate | Obliquity-ERD interaction |
4.5 Higher Harmonics (7 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| cos(3θM) | +4 | Harmonic | Mercury 3rd harmonic |
| cos(4θM) | -15 | Harmonic | Mercury 4th harmonic |
| sin(4θM) | +9 | Harmonic | Mercury 4th harmonic |
| cos(3δ) | +3 | Harmonic | Relative angle 3rd harmonic |
| sin(3δ) | +2 | Harmonic | Relative angle 3rd harmonic |
| ERD×cos(3δ) | +895 | Harmonic | ERD × 3rd harmonic |
| ERD×sin(3δ) | +232 | Harmonic | ERD × 3rd harmonic |
4.6 ERD × Periodic Terms (12 terms)
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| ERD×sin(t/7163) | +603 | Harmonic | ERD × mixing frequency |
| ERD×cos(t/7163) | -176 | Harmonic | ERD × mixing frequency |
| ERD×sin(t/20868) | -1,677 | Harmonic | ERD × Earth effective |
| ERD×cos(t/20868) | -10,336 | Harmonic | ERD × Earth effective |
| ERD×sin(t/121414) | -7,327 | Harmonic | ERD × 2×Mercury |
| ERD×cos(t/121414) | +395 | Harmonic | ERD × 2×Mercury |
| ERD×sin(t/19206) | +20,103 | Harmonic | ERD × sum frequency |
| ERD×cos(t/19206) | +62,079 | Harmonic | ERD × sum frequency |
| ERD×sin(t/28185) | -4,451 | Harmonic | ERD × difference frequency |
| ERD×cos(t/28185) | +3,083 | Harmonic | ERD × difference frequency |
| ERD×sin(t/111296) | +3,607 | Harmonic | ERD × Earth true |
| ERD×cos(t/111296) | -5,291 | Harmonic | ERD × Earth true |
4.7 ERD² × Periodic Terms (10 terms)
These quadratic rate terms were the key breakthrough for reaching 99.8% accuracy:
| Term | Coefficient | Source | Purpose |
|---|---|---|---|
| ERD²×sin(t/7163) | -132,402 | Harmonic | Quadratic rate × mixing |
| ERD²×cos(t/7163) | +36,800 | Harmonic | Quadratic rate × mixing |
| ERD²×sin(t/20868) | -1,134,935 | Harmonic | Quadratic rate × Earth effective |
| ERD²×cos(t/20868) | +1,784,775 | Harmonic | Quadratic rate × Earth effective |
| ERD²×sin(t/121414) | +1,123,268 | Harmonic | Quadratic rate × 2×Mercury |
| ERD²×cos(t/121414) | +416,835 | Harmonic | Quadratic rate × 2×Mercury |
| ERD²×sin(t/111296) | -623,746 | Harmonic | Quadratic rate × Earth true |
| ERD²×cos(t/111296) | +823,617 | Harmonic | Quadratic rate × Earth true |
| ERD²×sin(t/19206) | +197,457 | Harmonic | Quadratic rate × sum |
| ERD²×cos(t/19206) | +152,907 | Harmonic | Quadratic rate × sum |
4.8 Triple Interactions (ERD × Periodic × Angle, 24 terms)
| Term | Coefficient | Purpose |
|---|---|---|
| ERD×sin(t/7163)×cos(δ) | +7,828 | Triple: rate × 7163 × δ |
| ERD×sin(t/7163)×sin(δ) | +4,336 | Triple: rate × 7163 × δ |
| ERD×cos(t/7163)×cos(δ) | +5,325 | Triple: rate × 7163 × δ |
| ERD×cos(t/7163)×sin(δ) | -7,226 | Triple: rate × 7163 × δ |
| ERD×sin(t/7163)×cos(2δ) | -6,657 | Triple: rate × 7163 × 2δ |
| ERD×sin(t/7163)×sin(2δ) | +22,805 | Triple: rate × 7163 × 2δ |
| ERD×cos(t/7163)×cos(2δ) | +22,722 | Triple: rate × 7163 × 2δ |
| ERD×cos(t/7163)×sin(2δ) | +6,210 | Triple: rate × 7163 × 2δ |
| ERD×sin(t/20868)×cos(δ) | +40,984 | Triple: rate × 20868 × δ |
| ERD×sin(t/20868)×sin(δ) | -7,570 | Triple: rate × 20868 × δ |
| ERD×cos(t/20868)×cos(δ) | -12,433 | Triple: rate × 20868 × δ |
| ERD×cos(t/20868)×sin(δ) | -38,981 | Triple: rate × 20868 × δ |
| ERD×sin(t/121414)×cos(δ) | +31,407 | Triple: rate × 121414 × δ |
| ERD×sin(t/121414)×sin(δ) | +25,110 | Triple: rate × 121414 × δ |
| ERD×cos(t/121414)×cos(δ) | -16,012 | Triple: rate × 121414 × δ |
| ERD×cos(t/121414)×sin(δ) | +40,263 | Triple: rate × 121414 × δ |
| … | … | (plus 8 more 2δ terms) |
4.9 Mercury Period Terms (2 terms)
| Term | Coefficient | Purpose |
|---|---|---|
| ERD×sin(t/242828) | -14,713 | ERD × Mercury perihelion |
| ERD×cos(t/242828) | -35,146 | ERD × Mercury perihelion |
4.10 Periodic × Angle (no ERD, 11 terms)
| Term | Coefficient | Purpose |
|---|---|---|
| sin(t/20868)×cos(δ) | +137 | Period × angle |
| cos(t/20868)×cos(δ) | -122 | Period × angle |
| cos(t/20868)×sin(δ) | -134 | Period × angle |
| sin(t/121414)×sin(δ) | -148 | Period × angle |
| cos(t/121414)×cos(δ) | +114 | Period × angle |
| … | … | (plus 6 more) |
Summary (Predictive Formula)
Constant: +22
Total: 106 non-zero coefficients (predictive formula, year-only input)
Accuracy: R² = 0.9986 (explains 99.86% of variance across full 333,888-year cycle) RMSE: 2.83 arcsec/century
Note: The observed formula (Section 14) achieves R² = 1.0000 with 225 terms by using actual perihelion data from CSV.
Note on ERD Terms: The formula dramatically expands the ERD treatment with ERD × Periodic terms (12 terms), ERD² × Periodic terms (10 terms capturing quadratic rate modulation), and triple interactions (ERD × periodic × angle, 24 terms). The ERD² × Periodic terms proved to be the key to reaching 99.8% accuracy. The largest coefficients (±1.8 million for ERD²×cos(t/20868)) indicate that the squared rate deviation interacting with Earth’s effective perihelion cycle is a dominant correction term. The eccentricity coefficient (+478,089) reflects the strong coupling between Mercury’s eccentric orbit and ERD variations.
5. Venus Formula: Coefficient Breakdown (Observed Formula)
Formula Type: This section documents the observed formula (uses CSV data, 328 terms, R² = 1.0000, RMSE = 0.27″/cy). Venus also has a predictive formula (unified 273-term system, year-only input, R² = 0.9983, RMSE = 21.64″/cy) — see Formulas: Predictive Formulas.
Venus presents a fundamentally different challenge than Mercury. With an eccentricity of only 0.00678 (compared to Mercury’s 0.20564), Venus has a nearly circular orbit where geometric modulation effects are minimal. Instead, Venus’s fluctuation is dominated by variations in Earth’s axial precession rate.
5.1 The Earth Rate Deviation Model
The Venus formula is based on the physical principle that:
-
Perihelion points move at eccentricity distance from orbit center
- Venus: e = 0.00678, so perihelion is only 0.0049 AU from center (poorly defined)
- Earth: e = 0.01671, so perihelion is 0.0167 AU from center
-
Earth’s reference frame rotates due to axial precession
- Mean period: 25,684 years
- Current period: ~25,772 years (varying with obliquity)
-
Earth Rate Deviation (ERD) captures this variation:
ERD = (Earth perihelion rate) - (expected rate) = (Earth perihelion rate) - (360° / 20,868 years) -
The observed fluctuation depends on:
- The relative angle between Venus perihelion and Earth’s reference (θE - θV)
- Earth’s instantaneous axial precession rate variation (ERD)
- Interactions between these two factors
5.2 Relative Angle Terms (δ = θE - θV)
| Term | Coefficient |
|---|---|
| cos(δ) | +1,037 |
| sin(δ) | -1,312 |
| cos(2δ) | +80 |
| sin(2δ) | +860 |
| cos(3δ) | +33 |
| sin(3δ) | -44 |
| cos(4δ) | -14 |
| sin(4δ) | +10 |
5.3 Earth Rate Deviation Terms
| Term | Coefficient |
|---|---|
| ERD | -358,356 |
| ERD × cos(δ) | -234,829 |
| ERD × sin(δ) | -11,488 |
| ERD × cos(2δ) | -1,038,655 |
| ERD × sin(2δ) | +570,929 |
| ERD² | -112,855,487 |
5.4 Individual Angle Terms
| Term | Coefficient |
|---|---|
| cos(θE) | -2,884 |
| sin(θE) | +1,205 |
| cos(2θE) | -284 |
| sin(2θE) | +26 |
| cos(θV) | +4,084 |
| sin(θV) | -7,418 |
| cos(2θV) | -1,670 |
| sin(2θV) | +931 |
5.5 Periodic Terms
| Period | sin | cos |
|---|---|---|
| 667,776 (Venus) | +5,859 | +8,260 |
| 333,888 (H) | +395 | +746 |
| 111,296 (H/3) | -22 | -24 |
| 41,736 (H/8) | +39 | +2 |
| 20,868 (Earth eff.) | -7,833 | -2,925 |
| 6,956 (H/48) | -135 | +229 |
5.6 ERD × Periodic Terms
| Term | Coefficient | Physical Meaning |
|---|---|---|
| ERD × sin(t/20868) | +3,346,580 | ERD modulated by perihelion precession |
| ERD × cos(t/20868) | +1,163,334 | ERD modulated by perihelion precession |
| ERD × sin(t/667776) | -4,863,030 | ERD modulated by Venus perihelion |
| ERD × cos(t/667776) | +4,374,726 | ERD modulated by Venus perihelion |
| ERD × sin(t/333888) | +322,475 | ERD modulated by Holistic-Year |
| ERD × cos(t/333888) | -172,362 | ERD modulated by Holistic-Year |
| ERD × sin(t/111296) | +1,054 | ERD modulated by inclination |
| ERD × cos(t/111296) | -5,235 | ERD modulated by inclination |
| ERD × sin(t/41736) | +8,125 | ERD modulated by obliquity |
| ERD × cos(t/41736) | +17,121 | ERD modulated by obliquity |
| ERD × sin(t/6956) | -46,310 | ERD modulated by H/48 |
| ERD × cos(t/6956) | -61,608 | ERD modulated by H/48 |
5.7 Periodic × Angle Terms (amplitude modulation)
| Term | Coefficient | Physical Meaning |
|---|---|---|
| sin(t/20868) × cos(δ) | -5,921 | Perihelion × geometry |
| sin(t/20868) × sin(δ) | +7,926 | Perihelion × geometry |
| cos(t/20868) × cos(δ) | -19,742 | Perihelion × geometry |
| cos(t/20868) × sin(δ) | +22,347 | Perihelion × geometry |
| sin(t/20868) × cos(2δ) | -2,837 | Perihelion × 2× geometry |
| sin(t/20868) × sin(2δ) | +4,176 | Perihelion × 2× geometry |
| cos(t/20868) × cos(2δ) | +5,363 | Perihelion × 2× geometry |
| cos(t/20868) × sin(2δ) | +2,331 | Perihelion × 2× geometry |
| sin(t/667776) × cos(δ) | +7,621 | Venus period × geometry |
| sin(t/667776) × sin(δ) | -12,107 | Venus period × geometry |
| cos(t/667776) × cos(δ) | +12,298 | Venus period × geometry |
| cos(t/667776) × sin(δ) | -2,692 | Venus period × geometry |
| sin(t/667776) × cos(2δ) | -17,370 | Venus × 2× geometry |
| sin(t/667776) × sin(2δ) | -3,035 | Venus × 2× geometry |
| cos(t/667776) × cos(2δ) | +2,123 | Venus × 2× geometry |
| cos(t/667776) × sin(2δ) | -17,304 | Venus × 2× geometry |
| sin(t/333888) × cos(δ) | -707 | H × geometry |
| sin(t/333888) × sin(δ) | +665 | H × geometry |
| cos(t/333888) × cos(δ) | -833 | H × geometry |
| cos(t/333888) × sin(δ) | -414 | H × geometry |
5.8 ERD × Periodic × Angle Terms (triple interaction, KEY terms)
| Term | Coefficient | Physical Meaning |
|---|---|---|
| ERD × sin(t/20868) × sin(δ) | -5,657,660 | Rate × phase × geometry |
| ERD × cos(t/20868) × cos(δ) | -8,035,742 | Rate × phase × geometry |
| ERD × sin(t/20868) × cos(δ) | +125,840 | Rate × phase × geometry |
| ERD × cos(t/20868) × sin(δ) | +1,630,420 | Rate × phase × geometry |
| ERD × sin(t/20868) × cos(2δ) | -1,775,121 | Rate × phase × 2× geometry |
| ERD × sin(t/20868) × sin(2δ) | -3,139,592 | Rate × phase × 2× geometry |
| ERD × cos(t/20868) × cos(2δ) | -2,702,485 | Rate × phase × 2× geometry |
| ERD × cos(t/20868) × sin(2δ) | +986,428 | Rate × phase × 2× geometry |
| ERD × sin(t/667776) × sin(δ) | +6,117,614 | Rate × Venus × geometry |
| ERD × sin(t/667776) × cos(δ) | -2,166,058 | Rate × Venus × geometry |
| ERD × cos(t/667776) × cos(δ) | -171,831 | Rate × Venus × geometry |
| ERD × cos(t/667776) × sin(δ) | +1,334,347 | Rate × Venus × geometry |
| ERD × sin(t/333888) × sin(δ) | -86,179 | Rate × H × geometry |
| ERD × sin(t/333888) × cos(δ) | +306,909 | Rate × H × geometry |
| ERD × cos(t/333888) × cos(δ) | -427,267 | Rate × H × geometry |
| ERD × cos(t/333888) × sin(δ) | +507,766 | Rate × H × geometry |
| ERD × sin(t/111296) × cos(δ) | -1,401 | Rate × incl × geometry |
| ERD × sin(t/111296) × sin(δ) | -11,582 | Rate × incl × geometry |
| ERD × cos(t/111296) × cos(δ) | -15,229 | Rate × incl × geometry |
| ERD × cos(t/111296) × sin(δ) | -10,878 | Rate × incl × geometry |
| ERD × sin(t/41736) × cos(δ) | -37,979 | Rate × obliq × geometry |
| ERD × sin(t/41736) × sin(δ) | -5,593 | Rate × obliq × geometry |
| ERD × cos(t/41736) × cos(δ) | +9,982 | Rate × obliq × geometry |
| ERD × cos(t/41736) × sin(δ) | +6,997 | Rate × obliq × geometry |
| ERD × sin(t/6956) × cos(δ) | -128,955 | Rate × H/48 × geometry |
| ERD × sin(t/6956) × sin(δ) | +77,955 | Rate × H/48 × geometry |
| ERD × cos(t/6956) × cos(δ) | -47,034 | Rate × H/48 × geometry |
| ERD × cos(t/6956) × sin(δ) | +36,966 | Rate × H/48 × geometry |
5.9 ERD² × Periodic Terms (quadratic rate modulation)
| Term | Coefficient | Physical Meaning |
|---|---|---|
| ERD² × sin(t/20868) | +99,207,877 | Rate² × perihelion phase |
| ERD² × cos(t/20868) | +111,052,242 | Rate² × perihelion phase |
| ERD² × sin(t/667776) | +50,061,905 | Rate² × Venus phase |
| ERD² × cos(t/667776) | +286,162,990 | Rate² × Venus phase |
| ERD² × sin(t/333888) | -52,734,896 | Rate² × H phase |
| ERD² × cos(t/333888) | +11,348,620 | Rate² × H phase |
| ERD² × sin(t/111296) | -1,365,227 | Rate² × inclination phase |
| ERD² × cos(t/111296) | -1,497,701 | Rate² × inclination phase |
5.10 Higher Harmonic Terms
| Term | Coefficient | Physical Meaning |
|---|---|---|
| ERD × sin(t/20868) × cos(3δ) | -426,328 | Rate × phase × 3× geometry |
| ERD × sin(t/20868) × sin(3δ) | -246,344 | Rate × phase × 3× geometry |
| ERD × cos(t/20868) × cos(3δ) | -490,205 | Rate × phase × 3× geometry |
| ERD × cos(t/20868) × sin(3δ) | +493,871 | Rate × phase × 3× geometry |
| ERD × sin(t/667776) × cos(3δ) | +141,083 | Rate × Venus × 3× geometry |
| ERD × sin(t/667776) × sin(3δ) | -80,015 | Rate × Venus × 3× geometry |
| ERD × cos(t/667776) × cos(3δ) | +69,508 | Rate × Venus × 3× geometry |
| ERD × cos(t/667776) × sin(3δ) | +25,816 | Rate × Venus × 3× geometry |
| ERD × sin(t/6956) × cos(2δ) | -39,764 | Rate × H/48 × 2× geometry |
| ERD × sin(t/6956) × sin(2δ) | -45,035 | Rate × H/48 × 2× geometry |
| ERD × cos(t/6956) × cos(2δ) | -32,422 | Rate × H/48 × 2× geometry |
| ERD × cos(t/6956) × sin(2δ) | +72,034 | Rate × H/48 × 2× geometry |
Summary
Constant: +984
Total: 328 non-zero coefficients (organized into relative angle, ERD, individual angle, periodic, triple interaction, ERD³, and 4δ harmonic terms)
Accuracy: R² = 1.0000 (explains 100% of variance) RMSE: 0.27 arcsec/century (using observed perihelion from CSV)
Key Terms: The formula achieves near-perfect accuracy (R² = 1.0000, RMSE = 0.27) through:
- ERD² × Periodic terms — Quadratic rate modulation that captures non-linear behavior at cycle boundaries
- ERD² × Angle terms — Additional ERD² × cos/sin(δ), cos/sin(2δ), cos/sin(3δ) interactions
- Higher harmonic terms (3δ, 4δ) — Triple and quadruple relative angle terms that capture peak variations
- 6956 × 2δ interactions — Additional amplitude modulation from the H/48 cycle
- ERD × obliquity/eccentricity coupling — Cross-terms with Earth’s orbital parameters
The critical terms are ERD²×cos(667776) = +286,162,990 and ERD²×cos(20868) = +111,052,242, which capture the quadratic relationship between Earth’s precession rate variation and the Venus fluctuation amplitude.
6. Mars Formula: Coefficient Breakdown
Mars presents a unique challenge among the terrestrial planets. With an eccentricity of 0.09339 (between Venus’s near-circular orbit and Mercury’s highly elliptical one), Mars shows moderate geometric modulation effects combined with strong coupling to Earth’s orbital dynamics.
6.1 Physical Driver
Mars’s precession fluctuation is driven by:
- Relative geometry: The angle between Mars’s perihelion and Earth’s perihelion (δ = θE - θMars)
- Earth Rate Deviation (ERD): Variations in Earth’s axial precession rate
- Mars’s own perihelion precession: Period of ~77,051 years (H×3/13)
- Jupiter-Mars resonance: Mars is strongly influenced by Jupiter’s gravitational perturbations
6.2 Formula Summary
| Property | Value |
|---|---|
| Perihelion period | 77,051 years (H×3/13) |
| Eccentricity | 0.09339 |
| Formula R² | 1.0000 |
| RMSE | 0.02 arcsec/century |
| Features | 225 terms |
Why Mars achieves perfect fit: Using the actual observed perihelion from orbital data (rather than calculating from assumed periods) allows the formula to capture Mars’s complex precession pattern with near-perfect accuracy. Mars’s intermediate eccentricity means both geometric and ERD effects are significant.
6.3 Key Term Categories
The 225 terms include:
- Angle terms (δ harmonics through 4δ)
- Obliquity & eccentricity coupling terms
- ERD terms (linear, quadratic, cubic)
- Periodic terms from H, H/3, H/5, H/8, H/13, H/16, and Mars period
- Cross-products: ERD × periodic, periodic × angle, ERD × periodic × angle
- Beat frequency terms between Mars and Earth periods
For full implementation details, see the Python reference in /docs/mars_coeffs.py.
7. Jupiter Formula: Coefficient Breakdown
Jupiter, as the largest planet, dominates the outer solar system’s gravitational dynamics. Its precession fluctuation shows strong coupling with Saturn through the Saturn-Jupiter-Earth resonance loop described in Section 2.
7.1 Physical Driver
Jupiter’s precession fluctuation is driven by:
- Saturn resonance: Jupiter and Saturn are locked in gravitational resonance
- Earth’s reference frame motion: ERD effects still contribute
- Fibonacci hierarchy: Jupiter’s period (H/5 = 66,778 years) is a key Fibonacci division
- Long-term stability: Jupiter’s massive orbit shows slow, predictable precession
7.2 Formula Summary
| Property | Value |
|---|---|
| Perihelion period | 66,778 years (H/5) |
| Eccentricity | 0.04839 |
| Formula R² | 1.0000 |
| RMSE | 0.03 arcsec/century |
| Features | 225 terms |
Jupiter’s Fibonacci connection: Jupiter’s period H/5 = 66,778 years is a fundamental Fibonacci division. This explains why Jupiter appears in the beat frequency calculations for Mercury, Venus, and all other planets. Jupiter acts as a gravitational anchor for the outer solar system.
7.3 Key Periods in Jupiter Formula
| Period | H Fraction | Physical Meaning |
|---|---|---|
| 66,778 | H/5 | Jupiter’s own precession |
| 41,736 | H/8 | Saturn precession (resonance partner) |
| 25,684 | H/13 | Axial precession (Jupiter+Saturn sum) |
| 111,296 | H/3 | Inclination cycle |
| 20,868 | H/16 | Earth effective perihelion |
For full implementation details, see the Python reference in /docs/jupiter_coeffs.py.
8. Saturn Formula: Coefficient Breakdown
Saturn is unique in the solar system: it is the only planet with retrograde perihelion precession. While all other planets precess prograde (in the direction of orbital motion), Saturn’s perihelion precesses opposite to its orbital motion with a period of ~41,736 years.
8.1 Physical Driver
Saturn’s precession fluctuation is driven by:
- Retrograde precession: Creates beat frequencies when combined with prograde periods
- Jupiter resonance: Saturn and Jupiter form a closed resonance loop
- Obliquity coupling: Saturn’s period (H/8) matches Earth’s obliquity cycle
- Ring dynamics: Saturn’s rings influence its precession behavior
8.2 Formula Summary
| Property | Value |
|---|---|
| Perihelion period | 41,736 years (H/8) — RETROGRADE |
| Eccentricity | 0.05386 |
| Formula R² | 1.0000 |
| RMSE | 0.03 arcsec/century |
| Features | 225 terms |
Retrograde precession: Saturn’s perihelion precesses opposite to its orbital direction. This unique behavior creates the resonance loop with Jupiter and Earth that appears throughout the Holistic model. When calculating beat frequencies, Saturn’s rate must be treated as negative.
8.3 The Saturn-Jupiter-Earth Loop
Saturn’s role in the resonance loop (from Section 2):
1/Jupiter + 1/Saturn = 1/66,778 + 1/41,736 = 1/25,684 ≈ Axial precession
1/Jupiter − 1/Saturn = 1/66,778 − 1/41,736 = 1/111,296 = Earth true perihelionThis closed loop means Saturn’s coefficients include strong coupling to Jupiter and Earth periods.
8.4 Predictive Formula Enhancement
The predictive formula for Saturn uses the unified 273-term matrix enhanced with time-varying obliquity and eccentricity (GROUP 15 terms):
This accounts for the resonance between Saturn’s perihelion period (41,736 years) and Earth’s obliquity cycle. The predictive formula achieves R² = 1.0000, RMSE = 0.29″/century.
For implementation details, see docs/predictive_formula.py (GROUP 15 terms in build_features).
Critical Finding: Saturn is Unique
Of all seven planets modeled, Saturn is the only one that requires time-varying obliquity and eccentricity to achieve accurate predictive results:
| Planet | Obliq/Ecc Treatment | R² Achieved (unified 273-term) |
|---|---|---|
| Mercury | Constant (standard formulas) | 0.9990 |
| Venus | Not used | 0.9983 |
| Mars | Zeros (not needed) | 0.9999 |
| Jupiter | Zeros (not needed) | 0.9999 |
| Saturn | Time-varying (GROUP 15 terms) | 1.0000 |
| Uranus | Zeros (not needed) | 0.9999 |
| Neptune | Not used | 0.9999 |
This mathematical requirement provides strong evidence that Saturn drives Earth’s obliquity cycle. The period synchronization (both = 41,736 years = H/8) and the necessity of explicit coupling for accurate modeling suggest a causal relationship: Saturn’s gravitational influence modulates Earth’s axial tilt oscillation.
This challenges the standard Milankovitch interpretation, which attributes obliquity variations to general gravitational torque without identifying a specific planetary driver.
9. Uranus Formula: Coefficient Breakdown
Uranus’s perihelion precession period (H/3 = 111,296 years) matches Earth’s inclination precession cycle. This places Uranus in a key resonance position within the Fibonacci hierarchy, sharing a period with one of Earth’s fundamental orbital oscillations.
9.1 Physical Driver
Uranus’s precession fluctuation is driven by:
- Inclination cycle resonance: Uranus’s period matches H/3 (Earth’s inclination precession)
- Extreme axial tilt: Uranus’s 98° tilt may influence its precession dynamics
- Outer planet coupling: Interactions with Neptune, Saturn, and Jupiter
- Ice giant dynamics: Different internal structure than gas giants
9.2 Formula Summary
| Property | Value |
|---|---|
| Perihelion period | 111,296 years (H/3) |
| Eccentricity | 0.04726 |
| Formula R² | 1.0000 |
| RMSE | 0.01 arcsec/century |
| Features | 225 terms |
Near-perfect fit: Uranus achieves the best fit among all planets (RMSE = 0.01 arcsec/century). This remarkable precision suggests that Uranus’s precession is particularly well-described by the Fibonacci hierarchy. The match with Earth’s inclination cycle (H/3) indicates a deep resonance in the solar system’s structure.
9.3 Uranus-Earth Resonance
Uranus’s period (111,296 years) exactly matches Earth’s inclination precession cycle (H/3). This creates:
- Direct coupling between Uranus’s perihelion and Earth’s orbital plane oscillation
- Strong resonance terms in the formula
- Excellent predictability over historical timescales
For full implementation details, see the Python reference in /docs/uranus_coeffs.py.
10. Neptune Formula: Coefficient Breakdown
Neptune, the outermost major planet, has the longest precession period in the Fibonacci hierarchy: H×2 = 667,776 years. This ultra-slow precession, combined with Neptune’s nearly circular orbit, makes it the most challenging planet to model precisely.
10.1 Physical Driver
Neptune’s precession fluctuation is driven by:
- Outer solar system dynamics: Dominated by interactions with Uranus
- Venus period resonance: Period (H×2 = 667,776 years) matches Venus’s precession period
- Long orbital period: 164.8 years means slow accumulation of precession
- Kuiper Belt interactions: Possible perturbations from trans-Neptunian objects
10.2 Formula Summary
| Property | Value |
|---|---|
| Perihelion period | 667,776 years (H×2) |
| Eccentricity | 0.00859 (nearly circular) |
| Formula R² | 1.0000 |
| RMSE | 0.01 arcsec/century |
| Features | 225 terms |
Neptune-Venus connection: Neptune shares its perihelion precession period (H×2 = 667,776 years) with Venus. Despite being at opposite ends of the solar system, these two nearly-circular planets (e = 0.00859 and 0.00678 respectively) share this ultra-long timescale. This may reflect a deep structural property of the solar system’s organization around the Fibonacci hierarchy.
10.3 Neptune-Venus Period Match
Neptune’s precession period (H×2 = 667,776 years) exactly matches Venus’s precession period. Both planets have nearly circular orbits, which may explain why they share this ultra-long timescale in the Fibonacci hierarchy.
For full implementation details, see the Python reference in /docs/neptune_coeffs.py.
10.4 Predictive Formula Enhancement
Neptune now uses the unified 273-term predictive matrix, the same system used by all other planets. Despite Neptune and Venus sharing the same precession period (H×2 = 667,776 years), the unified matrix handles this through its ridge regression regularization (α=0.01), which prevents term interference between the two planets.
| Property | Observed Formula | Predictive Formula |
|---|---|---|
| R² | 1.0000 | 0.9999 |
| RMSE | 0.01 arcsec/century | 0.20 arcsec/century |
| Features | 225 terms | 273 terms (unified) |
Venus period match: Both Neptune and Venus have precession period H×2 = 667,776 years. The ridge regression regularization in the unified predictive system handles this shared period without requiring a custom reduced feature set.
11. Time-Varying Fluctuation
The Mercury fluctuation is not constant — it varies over Mercury’s 242,828-year perihelion cycle. The formula’s many terms (geometric, periodic, ERD) combine to produce a time-dependent value.
At year 2000, these terms combine to give approximately +38.8 arcsec/century. The historical “43 arcsec anomaly” corresponds to Einstein’s era (~1900, when the model gives ~42.9″). The value is decreasing as Earth’s precession cycles progress.
The model predicts this value will DECREASE over time. By year 2689, it drops to 4 arcsec/century; by year 3244, it becomes negative (-26 arcsec/century).
| Year | Fluctuation |
|---|---|
| 1912 | ~43″/century |
| 2023 | ~38″/century |
| 2689 | ~4″/century |
| 3244 | ~-26″/century |
Base Amplitude
The geometric coefficients scale with Mercury’s orbital properties:
A = Baseline × e_Mercury = 533.7 × 0.20564 ≈ 110 arcsec/centuryWhere:
- Baseline = 533.7 arcsec/century (Mercury’s Newtonian precession rate = 1,296,000″ ÷ 242,828 × 100)
- e_Mercury = 0.20564 (Mercury’s orbital eccentricity)
The actual coefficients in the formula are optimized jointly with ERD terms, resulting in values that differ from simple geometric predictions. The dominant cos(2θM) term (-441) and the large eccentricity coefficient (+478,089) reflect the complex interplay between geometric effects and Earth Rate Deviation.
12. Planetary Physical Comparison
The table below shows two sets of formula accuracy values:
- Observed: Uses actual perihelion positions from observational data (CSV)
- Predictive: Calculates all values from year only (standalone formulas)
| Property | Mercury | Venus | Mars | Jupiter | Saturn | Uranus | Neptune |
|---|---|---|---|---|---|---|---|
| Eccentricity | 0.20564 | 0.00678 | 0.09339 | 0.04839 | 0.05386 | 0.04726 | 0.00859 |
| Period (years) | 242,828 | 667,776 | 77,051 | 66,778 | 41,736 | 111,296 | 667,776 |
| H Fraction | H×8/11 | H×2 | H×3/13 | H/5 | H/8 | H/3 | H×2 |
Observed Formula Accuracy (using CSV data)
| Planet | R² | RMSE (″/cy) | Features |
|---|---|---|---|
| Mercury | 1.0000 | 0.08 | 225 |
| Venus | 1.0000 | 0.27 | 328 |
| Mars | 1.0000 | 0.02 | 225 |
| Jupiter | 1.0000 | 0.03 | 225 |
| Saturn | 1.0000 | 0.03 | 225 |
| Uranus | 1.0000 | 0.01 | 225 |
| Neptune | 1.0000 | 0.01 | 225 |
Predictive Formula Accuracy (year-only input, unified 273-term system)
| Planet | R² | RMSE (″/cy) | Features |
|---|---|---|---|
| Mercury | 0.9990 | 2.44 | 273 |
| Venus | 0.9983 | 21.64 | 273 |
| Mars | 0.9999 | 0.75 | 273 |
| Jupiter | 0.9999 | 0.52 | 273 |
| Saturn | 1.0000 | 0.29 | 273 |
| Uranus | 0.9999 | 0.28 | 273 |
| Neptune | 0.9999 | 0.20 | 273 |
Why the difference? Observed formulas use actual planetary positions from the CSV data, while predictive formulas must calculate everything from just the year. Venus’s near-circular orbit (e = 0.007) makes its perihelion position poorly defined, so the observed formula achieves much better accuracy (0.27 vs 21.64 arcsec).
Key Observations
Inner Planets (Mercury, Venus):
- Mercury’s high eccentricity (0.21) creates strong, predictable geometric modulation
- Venus’s near-circular orbit (e = 0.007) means precession fluctuation is dominated by ERD² effects
- Venus requires 328 features (including ERD³, 4δ harmonics, and obliquity/eccentricity coupling) to achieve 0.27 arcsec accuracy
Mars (Transition):
- Intermediate eccentricity (0.09) shows both geometric and ERD effects
- Achieves perfect fit (R² = 1.0000) when using observed perihelion data
- Acts as a bridge between inner planet and outer planet dynamics
Outer Planets (Jupiter, Saturn, Uranus, Neptune):
- All achieve perfect fits (R² = 1.0000) with 225 features
- Uranus and Neptune achieve the best fits (RMSE = 0.01 arcsec/century)
- Saturn is unique with retrograde precession, creating the resonance loop
- Neptune and Venus share the same period (H×2 = 667,776 years) despite being at opposite ends of the solar system
Physical Interpretation: The Fibonacci hierarchy organizes the entire solar system’s precession dynamics. Planetary periods correspond to simple fractions of H = 333,888 years: Jupiter (H/5), Saturn (H/8), Mars (H×3/13), Uranus (H/3), and both Venus and Neptune share H×2. The near-perfect fits achieved across all planets suggest the solar system is deeply organized around this mathematical structure.
13. Uncertainties and Limitations
The formula is a provisional approximation — a best-fit model with physically-motivated terms. The predictive Mercury RMSE of ~2.83 arcsec/century (106-term legacy formula) arises from several sources of uncertainty:
13.1 Base Period Parameters
The fundamental periods are model parameters, not independently derived values:
| Parameter | Current Value | H Fraction | Impact |
|---|---|---|---|
| Holistic-Year (H) | 333,888 years | — | All derived periods scale with H |
| Earth precession cycles | |||
| Axial precession | 25,684 years | H/13 | All formulas using longitude of perihelion |
| Inclination precession | 111,296 years | H/3 | Obliquity, inclination formulas |
| Effective perihelion | 20,868 years | H/16 | Earth term in all planetary fluctuations |
| Obliquity cycle | 41,736 years | H/8 | Obliquity formula |
| Planetary perihelion periods | |||
| Mercury | 242,828 years | H×8/11 | Mercury fluctuation formula |
| Venus | 667,776 years | H×2 | Venus fluctuation formula |
| Mars | 77,051 years | H×3/13 | Mars fluctuation formula |
| Jupiter | 66,778 years | H/5 | Jupiter fluctuation, beat frequencies |
| Saturn | 41,736 years (retrograde) | H/8 | Saturn fluctuation, resonance loop |
| Uranus | 111,296 years | H/3 | Uranus fluctuation formula |
| Neptune | 667,776 years | H×2 | Neptune fluctuation formula |
Note: Saturn is the only planet with retrograde perihelion precession (opposite to orbital motion). Venus and Neptune share the same period (H×2). Uranus shares its period with Earth’s inclination precession (H/3).
If future research refines H (e.g., to 333,900 or 333,850), all beat frequencies and coefficients would need recalculation.
13.2 Beat Frequency Sensitivity
The periodic terms depend on precise period ratios. Small changes propagate:
- If Mercury = 242,828 ± 100 years → the 7,163-year term shifts by ~3 years
- If H = 333,888 ± 50 years → the 111,296-year term (H/3) shifts by ~17 years
Over 300,000+ years, even small period errors accumulate into phase drift.
13.3 Simplified Geometry
The formula assumes:
- Idealized two-body interactions (Earth-Mercury)
- Constant orbital eccentricities (in reality, they vary slightly)
- No higher-order gravitational perturbations
13.4 Coefficient Rounding
All coefficients are rounded to integers for simplicity. The optimal least-squares values are non-integer (e.g., 42.8 → 43, -89.6 → -90), introducing small systematic errors.
Status: This formula should be considered provisional until the base periods (H, Mercury, Mars) are independently verified or derived from first principles. The legacy 106-term predictive formula explains 99.86% of variance with RMSE = 2.83 arcsec/century. The unified 273-term predictive system achieves R² = 0.9990 (RMSE = 2.44) for Mercury. The remaining residual represents the combined effect of these uncertainties.
14. Observed-Angle Formulas (Using Observational Data)
The formulas in this section require observed orbital parameters as inputs — Earth perihelion position, planetary perihelion position, obliquity, eccentricity, and Earth Rate Deviation (ERD). These formulas were used during model development to fit against ice-core chronological data. For predictive formulas (year-only input), see Formulas.
Relationship to Earlier Sections:
- Section 4 documents Mercury’s predictive formula (106 terms, year-only input)
- Section 5 documents Venus’s observed formula coefficient breakdown (328 terms)
- Sections 6-10 summarize outer planet formulas
This section provides implementation details: Excel formulas, column references, and Python script locations.
Legacy Excel Formulas: The Excel formulas for Mercury and Venus below are simplified approximations retained for spreadsheet users. They were manually constructed with rounded coefficients and do not match the current Python implementations exactly. For accurate calculations, use the Python scripts in /docs/. Excel formulas are provided only for Mercury and Venus — outer planets should use Python exclusively.
Earth Rate Deviation (ERD) — Shared Helper
Both Mercury and Venus formulas use Earth Rate Deviation (ERD) to account for variations in Earth’s axial precession rate.
Scientific Notation:
Where:
- = Instantaneous Earth perihelion rate (°/year)
- /year — Expected (mean) rate
The derivative is computed as:
With angle wraparound correction:
Calculate ERD once in column DR:
=IF(AI2738-AI2737<-180,(AI2738-AI2737+360)/(A2738-A2737),IF(AI2738-AI2737>180,(AI2738-AI2737-360)/(A2738-A2737),(AI2738-AI2737)/(A2738-A2737)))-360/20868Where: A = Year, AI = Earth Perihelion. This calculates the rate from the previous row, handling angle wraparound at ±180°.
Shared Column References
| Column | Content | Used By |
|---|---|---|
| A | Year | All formulas |
| AI | Earth Perihelion (degrees) | Mercury, Venus, ERD |
| DH | Mercury Perihelion (degrees) | Mercury |
| DX | Venus Perihelion (degrees) | Venus |
| U | Obliquity (degrees) | Mercury, Venus |
| F | Earth Eccentricity | Mercury |
| DR | Earth Rate Deviation (ERD) | Mercury, Venus |
Mercury Fluctuation Formula (Using Observed Angles)
Scientific Notation:
Geometric Terms:
Where (relative angle) and (sum angle).
With coefficients: , , , , ,
Phase (Periodic) Terms:
Where = Year + 301,340 and periods are: 7,163; 19,206; 121,414; 28,185; 111,296; 66,778; 11,038; 12,521; 9,820; 20,868; 242,828 years.
ERD (Earth Rate Deviation) Terms:
With coefficients: , , , , , ,
ERD × Periodic, ERD² × Periodic, and Triple Interactions:
Key ERD² × Periodic coefficients: +1,784,775 · ERD² cos(t/20868), −1,134,935 · ERD² sin(t/20868), +1,123,268 · ERD² sin(t/121414), +823,617 · ERD² cos(t/111296)
Higher Harmonics:
Auxiliary Terms:
With coefficients: (obliquity), (eccentricity), , (these are legacy Excel coefficients; Python observed formula uses retrained coefficients)
Result units: arcseconds per century (″/century)
=-27*ABS(SIN((AI2738-DH2738)*PI()/180))*COS((AI2738+DH2738)*PI()/180)-7*COS((AI2738+DH2738)*PI()/180)+7*SIN((AI2738+DH2738)*PI()/180)-441*COS(2*DH2738*PI()/180)+173*SIN(2*DH2738*PI()/180)+7*COS(2*AI2738*PI()/180)+16*SIN(2*PI()*(A2738+301340)/7163)+4*COS(2*PI()*(A2738+301340)/7163)+18*SIN(2*PI()*(A2738+301340)/19206)-56*COS(2*PI()*(A2738+301340)/19206)+1*SIN(2*PI()*(A2738+301340)/121414)+431*COS(2*PI()*(A2738+301340)/121414)+24*SIN(2*PI()*(A2738+301340)/28185)+17*COS(2*PI()*(A2738+301340)/28185)-1*SIN(2*PI()*(A2738+301340)/111296)+4*COS(2*PI()*(A2738+301340)/111296)-2*SIN(2*PI()*(A2738+301340)/66778)+1*COS(2*PI()*(A2738+301340)/66778)+3*SIN(2*PI()*(A2738+301340)/11038)+1*COS(2*PI()*(A2738+301340)/11038)+1*SIN(2*PI()*(A2738+301340)/12521)-8*COS(2*PI()*(A2738+301340)/12521)-1*SIN(2*PI()*(A2738+301340)/9820)+3*COS(2*PI()*(A2738+301340)/9820)+12*(U2738-23.414)+478089*(F2738-0.015354)+21322*DR2738+81832*DR2738*COS((AI2738-DH2738)*PI()/180)+2702*DR2738*SIN((AI2738-DH2738)*PI()/180)-620*DR2738*COS(2*(AI2738-DH2738)*PI()/180)+786*DR2738*SIN(2*(AI2738-DH2738)*PI()/180)+853292*DR2738*DR2738-403*(U2738-23.414)*DR2738+4*COS(3*DH2738*PI()/180)-15*COS(4*DH2738*PI()/180)+9*SIN(4*DH2738*PI()/180)+3*COS(3*(AI2738-DH2738)*PI()/180)+2*SIN(3*(AI2738-DH2738)*PI()/180)+895*DR2738*COS(3*(AI2738-DH2738)*PI()/180)+232*DR2738*SIN(3*(AI2738-DH2738)*PI()/180)+603*DR2738*SIN(2*PI()*(A2738+301340)/7163)-176*DR2738*COS(2*PI()*(A2738+301340)/7163)-1677*DR2738*SIN(2*PI()*(A2738+301340)/20868)-10336*DR2738*COS(2*PI()*(A2738+301340)/20868)-7327*DR2738*SIN(2*PI()*(A2738+301340)/121414)+395*DR2738*COS(2*PI()*(A2738+301340)/121414)+20103*DR2738*SIN(2*PI()*(A2738+301340)/19206)+62079*DR2738*COS(2*PI()*(A2738+301340)/19206)-4451*DR2738*SIN(2*PI()*(A2738+301340)/28185)+3083*DR2738*COS(2*PI()*(A2738+301340)/28185)+3607*DR2738*SIN(2*PI()*(A2738+301340)/111296)-5291*DR2738*COS(2*PI()*(A2738+301340)/111296)-132402*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/7163)+36800*DR2738*DR2738*COS(2*PI()*(A2738+301340)/7163)-1134935*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/20868)+1784775*DR2738*DR2738*COS(2*PI()*(A2738+301340)/20868)+1123268*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/121414)+416835*DR2738*DR2738*COS(2*PI()*(A2738+301340)/121414)-623746*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/111296)+823617*DR2738*DR2738*COS(2*PI()*(A2738+301340)/111296)+197457*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/19206)+152907*DR2738*DR2738*COS(2*PI()*(A2738+301340)/19206)+7828*DR2738*SIN(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)+4336*DR2738*SIN(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)-6657*DR2738*SIN(2*PI()*(A2738+301340)/7163)*COS(2*(AI2738-DH2738)*PI()/180)+22805*DR2738*SIN(2*PI()*(A2738+301340)/7163)*SIN(2*(AI2738-DH2738)*PI()/180)+5325*DR2738*COS(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)-7226*DR2738*COS(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)+22722*DR2738*COS(2*PI()*(A2738+301340)/7163)*COS(2*(AI2738-DH2738)*PI()/180)+6210*DR2738*COS(2*PI()*(A2738+301340)/7163)*SIN(2*(AI2738-DH2738)*PI()/180)+40984*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-7570*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)+314*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DH2738)*PI()/180)+1977*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DH2738)*PI()/180)-12433*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-38981*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)+1015*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DH2738)*PI()/180)-139*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DH2738)*PI()/180)+31407*DR2738*SIN(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)+25110*DR2738*SIN(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)-21*DR2738*SIN(2*PI()*(A2738+301340)/121414)*COS(2*(AI2738-DH2738)*PI()/180)-13622*DR2738*SIN(2*PI()*(A2738+301340)/121414)*SIN(2*(AI2738-DH2738)*PI()/180)-16012*DR2738*COS(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)+40263*DR2738*COS(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+12136*DR2738*COS(2*PI()*(A2738+301340)/121414)*COS(2*(AI2738-DH2738)*PI()/180)+260*DR2738*COS(2*PI()*(A2738+301340)/121414)*SIN(2*(AI2738-DH2738)*PI()/180)-15*SIN(2*PI()*(A2738+301340)/242828)-135*COS(2*PI()*(A2738+301340)/242828)-14713*DR2738*SIN(2*PI()*(A2738+301340)/242828)-35146*DR2738*COS(2*PI()*(A2738+301340)/242828)-3*SIN(2*PI()*(A2738+301340)/20868)+650*COS(2*PI()*(A2738+301340)/20868)+2*SIN(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)-4*SIN(2*PI()*(A2738+301340)/7163)*SIN((AI2738-DH2738)*PI()/180)-2*COS(2*PI()*(A2738+301340)/7163)*COS((AI2738-DH2738)*PI()/180)+137*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)+13*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)-122*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DH2738)*PI()/180)-134*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DH2738)*PI()/180)-29*SIN(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)-148*SIN(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+114*COS(2*PI()*(A2738+301340)/121414)*COS((AI2738-DH2738)*PI()/180)-14*COS(2*PI()*(A2738+301340)/121414)*SIN((AI2738-DH2738)*PI()/180)+22Excel Formula Notes (Legacy):
- This Excel formula is a legacy approximation (~104 terms) with manually rounded coefficients
- Period constants may differ slightly from current Python implementation
- The eccentricity mean in this formula (0.015354) has been updated to 0.015387 in the Python code; this Excel formula uses legacy coefficients
- For accurate calculations: Use
/docs/observed_formula.py(R² = 1.0000, RMSE = 0.08″/cy, 225 terms) - Predictive formula: R² = 0.9986, RMSE = 2.83″/cy (106 terms) — see Section 4
Predicted Values
| Year | Fluctuation |
|---|---|
| 1912 | ~43″/century |
| 2023 | ~38″/century |
| 2689 | ~4″/century |
| 3244 | ~-26″/century |
The model predicts this value will DECREASE over time. See Section 11 for detailed analysis.
Venus Fluctuation Formula (Using Observed Angles)
Venus presents a fundamentally different challenge than Mercury. With an eccentricity of only 0.00678 (compared to Mercury’s 0.20564), Venus has a nearly circular orbit where geometric modulation effects are minimal. Instead, Venus’s fluctuation is dominated by variations in Earth’s axial precession rate (ERD² terms).
Formula Summary:
- R² = 1.0000 (explains 100% of variance)
- RMSE = 0.27 arcsec/century
- Features: 328 terms (V3_VENUS optimized matrix)
- Key drivers: ERD² × periodic terms, ERD³ terms, ERD × obliquity/eccentricity coupling, 3δ and 4δ harmonics
For the complete coefficient breakdown and physical explanation, see Section 5.
Uses the shared ERD helper from column DR (see above for ERD calculation).
Scientific Notation:
Relative Angle Terms ():
With coefficients: , , , , , , ,
ERD Terms:
With coefficients: , , , , ,
Individual Angle Terms:
With coefficients: , , , , , , ,
Phase (Periodic) Terms:
Where = Year + 301,340 and periods are: 667,776; 333,888; 111,296; 41,736; 20,868; 6,956 years.
ERD × Periodic Terms:
Where periods are: 20,868; 667,776; 333,888; 111,296; 41,736; 6,956 years. See component table for coefficients.
Periodic × Angle Terms (amplitude modulation when ERD is small):
Key terms for : , , ,
ERD × Periodic × Angle Terms (triple interaction):
Key terms for : , , ,
ERD² × Periodic Terms (quadratic rate modulation):
Key terms: , ,
Higher Harmonic Terms (3δ):
Key terms for : , , ,
Constant:
Result units: arcseconds per century (″/century)
Note (Legacy): This Excel formula is a legacy approximation simplified to fit Excel’s 8,192 character limit. Some period terms have been removed and coefficients are manually rounded. For accurate calculations: Use /docs/observed_formula.py (R² = 1.0000, RMSE = 0.27″/cy, 328 terms).
=1037*COS((AI2738-DX2738)*PI()/180)-1312*SIN((AI2738-DX2738)*PI()/180)+80*COS(2*(AI2738-DX2738)*PI()/180)+860*SIN(2*(AI2738-DX2738)*PI()/180)+33*COS(3*(AI2738-DX2738)*PI()/180)-44*SIN(3*(AI2738-DX2738)*PI()/180)-14*COS(4*(AI2738-DX2738)*PI()/180)+10*SIN(4*(AI2738-DX2738)*PI()/180)-2884*COS(AI2738*PI()/180)+1205*SIN(AI2738*PI()/180)-284*COS(2*AI2738*PI()/180)+26*SIN(2*AI2738*PI()/180)+4084*COS(DX2738*PI()/180)-7418*SIN(DX2738*PI()/180)-1670*COS(2*DX2738*PI()/180)+931*SIN(2*DX2738*PI()/180)-358356*DR2738-234829*DR2738*COS((AI2738-DX2738)*PI()/180)-11488*DR2738*SIN((AI2738-DX2738)*PI()/180)-1038655*DR2738*COS(2*(AI2738-DX2738)*PI()/180)+570929*DR2738*SIN(2*(AI2738-DX2738)*PI()/180)-112855487*DR2738*DR2738+5859*SIN(2*PI()*(A2738+301340)/667776)+8260*COS(2*PI()*(A2738+301340)/667776)+395*SIN(2*PI()*(A2738+301340)/333888)+746*COS(2*PI()*(A2738+301340)/333888)+39*SIN(2*PI()*(A2738+301340)/41736)-7833*SIN(2*PI()*(A2738+301340)/20868)-2925*COS(2*PI()*(A2738+301340)/20868)-135*SIN(2*PI()*(A2738+301340)/6956)+229*COS(2*PI()*(A2738+301340)/6956)-4863030*DR2738*SIN(2*PI()*(A2738+301340)/667776)+4374726*DR2738*COS(2*PI()*(A2738+301340)/667776)+322475*DR2738*SIN(2*PI()*(A2738+301340)/333888)-172362*DR2738*COS(2*PI()*(A2738+301340)/333888)+8125*DR2738*SIN(2*PI()*(A2738+301340)/41736)+17121*DR2738*COS(2*PI()*(A2738+301340)/41736)+3346580*DR2738*SIN(2*PI()*(A2738+301340)/20868)+1163334*DR2738*COS(2*PI()*(A2738+301340)/20868)-46310*DR2738*SIN(2*PI()*(A2738+301340)/6956)-61608*DR2738*COS(2*PI()*(A2738+301340)/6956)-5921*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+7926*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-19742*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+22347*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-2837*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+4176*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)+5363*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+2331*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)+7621*SIN(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)-12107*SIN(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)+12298*COS(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)-2692*COS(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-17370*SIN(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-3035*SIN(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+2123*COS(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-17304*COS(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)-707*SIN(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)+665*SIN(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-833*COS(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)-414*COS(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-918*SIN(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)+1582*SIN(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)-1728*COS(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-1133*COS(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)+125840*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)-5657660*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-8035742*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS((AI2738-DX2738)*PI()/180)+1630420*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN((AI2738-DX2738)*PI()/180)-1775121*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)-3139592*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)-2702485*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(2*(AI2738-DX2738)*PI()/180)+986428*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(2*(AI2738-DX2738)*PI()/180)-2166058*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)+6117614*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-171831*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS((AI2738-DX2738)*PI()/180)+1334347*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN((AI2738-DX2738)*PI()/180)-371905*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-289032*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+1323251*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS(2*(AI2738-DX2738)*PI()/180)-786120*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN(2*(AI2738-DX2738)*PI()/180)+306909*DR2738*SIN(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)-86179*DR2738*SIN(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-427267*DR2738*COS(2*PI()*(A2738+301340)/333888)*COS((AI2738-DX2738)*PI()/180)+507766*DR2738*COS(2*PI()*(A2738+301340)/333888)*SIN((AI2738-DX2738)*PI()/180)-376674*DR2738*SIN(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-180509*DR2738*SIN(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)+226744*DR2738*COS(2*PI()*(A2738+301340)/333888)*COS(2*(AI2738-DX2738)*PI()/180)-375559*DR2738*COS(2*PI()*(A2738+301340)/333888)*SIN(2*(AI2738-DX2738)*PI()/180)-1187*SIN(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+205*SIN(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)+342*COS(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+339*COS(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-128955*DR2738*SIN(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+77955*DR2738*SIN(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-47034*DR2738*COS(2*PI()*(A2738+301340)/6956)*COS((AI2738-DX2738)*PI()/180)+36966*DR2738*COS(2*PI()*(A2738+301340)/6956)*SIN((AI2738-DX2738)*PI()/180)-37979*DR2738*SIN(2*PI()*(A2738+301340)/41736)*COS((AI2738-DX2738)*PI()/180)-5593*DR2738*SIN(2*PI()*(A2738+301340)/41736)*SIN((AI2738-DX2738)*PI()/180)+9982*DR2738*COS(2*PI()*(A2738+301340)/41736)*COS((AI2738-DX2738)*PI()/180)+6997*DR2738*COS(2*PI()*(A2738+301340)/41736)*SIN((AI2738-DX2738)*PI()/180)+50061905*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/667776)+286162990*DR2738*DR2738*COS(2*PI()*(A2738+301340)/667776)-52734896*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/333888)+11348620*DR2738*DR2738*COS(2*PI()*(A2738+301340)/333888)+99207877*DR2738*DR2738*SIN(2*PI()*(A2738+301340)/20868)+111052242*DR2738*DR2738*COS(2*PI()*(A2738+301340)/20868)-426328*DR2738*SIN(2*PI()*(A2738+301340)/20868)*COS(3*(AI2738-DX2738)*PI()/180)-246344*DR2738*SIN(2*PI()*(A2738+301340)/20868)*SIN(3*(AI2738-DX2738)*PI()/180)-490205*DR2738*COS(2*PI()*(A2738+301340)/20868)*COS(3*(AI2738-DX2738)*PI()/180)+493871*DR2738*COS(2*PI()*(A2738+301340)/20868)*SIN(3*(AI2738-DX2738)*PI()/180)+120*SIN(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)+466*SIN(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)+308*COS(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)-39764*DR2738*SIN(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)-45035*DR2738*SIN(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)-32422*DR2738*COS(2*PI()*(A2738+301340)/6956)*COS(2*(AI2738-DX2738)*PI()/180)+72034*DR2738*COS(2*PI()*(A2738+301340)/6956)*SIN(2*(AI2738-DX2738)*PI()/180)+141083*DR2738*SIN(2*PI()*(A2738+301340)/667776)*COS(3*(AI2738-DX2738)*PI()/180)-80015*DR2738*SIN(2*PI()*(A2738+301340)/667776)*SIN(3*(AI2738-DX2738)*PI()/180)+69508*DR2738*COS(2*PI()*(A2738+301340)/667776)*COS(3*(AI2738-DX2738)*PI()/180)+25816*DR2738*COS(2*PI()*(A2738+301340)/667776)*SIN(3*(AI2738-DX2738)*PI()/180)+984All Planets: Python Implementation Reference
All planetary formulas are implemented in Python for consistency and to handle the complex feature matrices (up to 328 terms for Venus). The Python scripts support both Mercury and Venus as well as the outer planets.
Column References:
| Column | Content | Used By |
|---|---|---|
| A | Year | All planets |
| AI | Earth Perihelion (degrees) | All planets |
| DR | Earth Rate Deviation (ERD) | All planets |
| U | Obliquity (degrees) | All planets |
| F | Earth Eccentricity | All planets |
| DH | Mercury Perihelion (degrees) | Mercury |
| DX | Venus Perihelion (degrees) | Venus |
| AK | Mars Perihelion (degrees) | Mars |
| AT | Jupiter Perihelion (degrees) | Jupiter |
| BC | Saturn Perihelion (degrees) | Saturn |
| BL | Uranus Perihelion (degrees) | Uranus |
| BU | Neptune Perihelion (degrees) | Neptune |
Formula Summary (Using Observed Perihelion):
| Planet | R² | RMSE (″/cy) | Features | Period (years) |
|---|---|---|---|---|
| Mercury | 1.0000 | 0.08 | 225 | 242,828 (H×8/11) |
| Venus | 1.0000 | 0.27 | 328 | 667,776 (H×2) |
| Mars | 1.0000 | 0.02 | 225 | 77,051 (H×3/13) |
| Jupiter | 1.0000 | 0.03 | 225 | 66,778 (H/5) |
| Saturn | 1.0000 | 0.03 | 225 | 41,736 (H/8) |
| Uranus | 1.0000 | 0.01 | 225 | 111,296 (H/3) |
| Neptune | 1.0000 | 0.01 | 225 | 667,776 (H×2) |
Python Implementation: A unified Python script provides all implementations:
Main script: /docs/observed_formula.py — Calculates precession fluctuation for all 7 planets (Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune) using observed perihelion data from the CSV file.
Supporting files:
/docs/train_observed.py— Training script for observed formula coefficients (SVD-based least-squares)/docs/train_precession.py— Training script for predictive formula coefficients (ridge regression)- Coefficient files:
mercury_coeffs.py,venus_coeffs.py,mars_coeffs.py,jupiter_coeffs.py,saturn_coeffs.py,uranus_coeffs.py,neptune_coeffs.py
Venus uses a specialized V3_VENUS feature matrix with 328 terms (including ERD³, 4δ harmonics, and obliquity/eccentricity coupling) to achieve 0.27 arcsec accuracy. Other planets use the standard 225-term V2 matrix.
Return to Formulas for the practical cookbook, or Scientific Background for the model explanation.